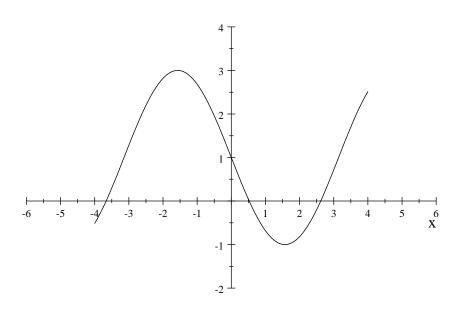
1	2	3	4	5	6	Total

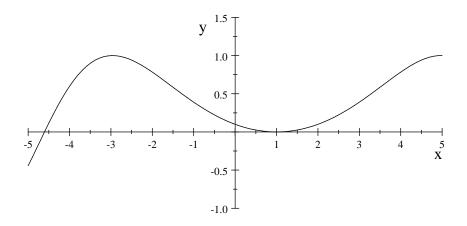
Math 101 Exemption Exam

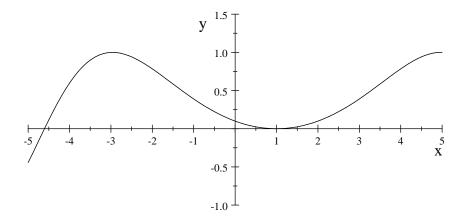

Duration(90 minutes)

Name:

Student Number:

1. (10 pts) The graph of a function f(x) is given below. Sketch the graph of the function $g(x)=-\frac{1}{2}f(x+2)+1$.


29.09.2010


2. (15 pts) Find the points at which the function $f(x) = x^3 - 9x^2 - 48x + 52$ attains its local maximum, local minimum, and global maximum on the interval (-3, 10), if they exist.

3. (10pt) Of all the cylinders with volume $8cm^3$ what are the dimensions of the one which has the maximum surface area. (No need to simplify your answer.)

- 4. (15 pts) The graph of a function g(x) is given below.
- (a) Sketch the graph of its antiderivative.

(b) Sketch the graph of $g^{'}$, the derivative of g.

- $5.~(20~{\rm pts})$ Determine whether the statements below are true or false. Explain your answer. CORRECT ANSWERS WITHOUT ANY JUSTIFICATION WILL NOT GET CREDIT.
 - (a) The area under the curve $f(x) = \frac{1}{1+x^2}$ and above the x-axis is infinite.
- (b) The graph of the function $f(x) = x^4 x^3$ changes from being concave up to concave down at x = 0.
 - (c) The function $f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is continuous at x = 0.

(d) Let f be a differentiable function such that f(1)=1 and f'(1)=2. Then the best linear approximation to f at x=1 is g(x)=1+2x.

6. (30 pts) Evaluate the following:

(a)
$$\lim_{x \to \infty} \frac{e^x + x^2}{2e^x + x}$$

(b)
$$\lim_{x\to 0} \frac{\cos(x) - 1}{x^2}$$

(c)
$$\frac{d}{dx} \left(\sin(\cos(x)) \right)$$

(d)
$$\int x \sin(x) dx$$

(e)
$$\int \frac{e^t + 1}{e^t + t} dt$$

(f)
$$\frac{d}{dx} \int_0^{x^2} \tan(y) dy$$