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1 Introduction

A¢ rmative action policies in societies with heterogeneous populations are increasingly popular
and are often considered necessary for equalizing opportunities for certain demographic groups.
The United States and Brazil are examples of countries with greatly heterogeneous populations
in terms of wealth and racial backgrounds. One way to mitigate the problem of inequality
between individuals who belong to di¤erent racial or gender groups or come from families with
di¤erent income levels is through a¢ rmative action. A¢ rmative action is a method of positive
discrimination in favor of a certain groups of people to close socioeconomic gaps that exist
between di¤erent groups as a result of historic discriminatory practices. This paper studies
a¢ rmative action in college admission in Brazil where the goal is to give underrepresented
groups increased chances of attending better universities.
The Brazilian federal higher education system comprises of 59 universities and 38 institutes

of education, science and technology, with an annual in�ow of about one million students to
its undergraduate programs. Following an increasing role for a¢ rmative action for students
of African descent and of low-income families in terms of access to public universities1, the
Brazilian congress enacted in August 2012 a law establishing the implementation of a series of
a¢ rmative action policies throughout said system.
The law established that 50% of the seats in each program o¤ered in those institutions2

should be used for the a¢ rmative action policies. In order to claim the privilege of having
higher priority in the access to those seats, a student must complete the three years of high-
school in a public institution (being it local, state or federal). When assigning students to at
least 50% of those seats, the university must also give higher priority to students who claim
the privilege associated with being low-income (and give documentation proving such status as
de�ned in law.) Additionally, when assigning a number of seats in the same proportion of the
aggregate number of blacks, browns and indians (here referred to as �minorities�) in the state
in which the institution is, the university should give higher priority to students who claim the
privilege associated with being a minority. We will throughout this chapter talk in terms of
seats giving higher priority to students who claim some privileges, and denote those as �public
HS privilege�, �low-income privilege�and �minority privilege�.
In a state where minorities constitute 25% of the population, for example, a program with

capacity of 80 will have 40 seats giving higher priority for students claiming public HS privilege.
At least 20 of those should give higher priority for those claiming low-income privilege, and 10
for those claiming minority privilege.
In October of the same year, Brazil�s Ministry of Education published an ordinance speci-

fying some details on the implementation of the a¢ rmative action law as well as a suggested
mechanism for choosing students while satisfying those policies. Starting in the student selec-
tion processes of 2013, based on our observations, those recommendations were widely adopted
as the new selection criteria.

1For detailed information about history of a¢ rmative action in Brazil, check Moehlecke (2003).
2In Brazil, like in the Turkish system studied in Balinski and Sonmez (1999), students apply directly to a

speci�c program in the university, di¤erently from other countries like the US where students simply apply to
the university and once there chooses majors or programs to pursuit.
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The key distinctive issue presented by the privileges proposed in the law is the fact that
they are multidimensional. That is, students may belong to one or more of the groups speci�ed.
For instance, a low-income white student from public high school quali�es for the low-income
privilege but not for the minority privilege. Although the literature for a¢ rmative action from
a mechanism design perspective has seen many important contributions, as in Abdulkadiroglu
and Sönmez (2003), Westkamp (2013) and Hafalir et al. (2013), to the best of our knowledge
none of them are able to respond to the challenge introduced by these types of privileges.
Another unique aspect of this case is that students are not obligated to apply to the uni-

versities using any of the privileges for a¢ rmative action to groups to which they belong. This
is due to the fact that being selected through the a¢ rmative action policies is an �opt-in�pro-
cedure, that is, those students who are object of those privileges may choose not to be selected
through that special criterion. Therefore, some students may choose to �hide�whether they
belong to some of the three groups mentioned above, depending on the mechanism used for the
assignments.
Starting in 2010, a new centralized system3 was put in place to match students to federal

universities. Although the study of the characteristics of that system is outside of the scope of
this paper, the problems identi�ed here are still present in it, and moreover it shows that there
is a tendency for centralization of that process. Methods that could improve upon the current
system in a centralized way (as the one that we present in this chapter,) may therefore have a
direct application and impact.
The problem of allocating indivisible goods in the absence of money is studied in many

papers, starting from the seminal paper by Gale and Shapley (1962). They study a college
admissions market where students have preferences over colleges and colleges have preferences
over sets of students to be admitted. The market clearing condition that they de�ned, stability,
is still in use (sometimes with variations) and considered as one of the most important goals
that mechanism designers consider for matching problems. They also introduce the celebrated
student-proposing deferred acceptance algorithm (DA) to �nd a stable allocation. The DA
mechanism is also utilized in many applied and theoretical papers in the matching literature.
The centralized algorithm we suggest in this paper, the cumulative o¤er algorithm, is also a
variation of the DA algorithm.
The school choice with a¢ rmative action problem consists of two parts. The �rst part is the

schools�criteria for choosing students, which we denote a choice function. A choice function
provides a set of students that are selected for any possible set of students that apply for a
given school. The second part is the algorithm that the central authority uses to allocate school
seats to students using the schools�choice functions.
The �rst approach to this problem from a mechanism design perspective is the work of

Abdulkadiroglu and Sönmez (2003). They analyze the system in Boston (denoted Boston
Mechanism), which gave students higher priorities in schools in their neighborhoods or in schools
in which students have a sibling already attending. By giving these priorities, the Boston
Mechanism positively discriminates some students for certain schools. Abdulkadiroglu and
Sönmez (2003) propose two algorithms, DA and top trading cycles (TTC), as alternatives for the

3The Uni�ed System of Selection, denoted SISU.
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Boston school choice algorithm, while keeping priorities of the schools as given. They show that
the DA yield outcomes that are stable and e¢ cient from the students�perspective. Also, DA
is not manipulable, i.e. no student can manipulate their preferences and obtain a better school
assignment. Subsequently, Abdulkadiroglu (2005) considers the college admission problem with
a¢ rmative action policy, and shows su¢ cient conditions on the schools�preferences to recover
the properties of the DA algorithm.
In a recent paper, Westkamp (2013) studies the German university admission system in

which reserved seats are transferred to di¤erent subpopulations in case of lack of applications.
In this matching with complex constraints problem, the author speci�es a method for schools
to choose sets of students in any given case and designs a mechanism that gives a stable
allocation under these circumstances. In another recent paper, Kamada and Kojima (2012)
study the Japanese Residency Matching Program, where there are quotas for regions in order
to help rural regions attract more residents. In the mechanism they study, the government sets
a target capacity for each hospital to implement these quotas. They show that using target
capacities may result in ine¢ ciencies and that violating these targets may improve over the
ine¢ ciencies.
In 2012, Kojima showed that in a¢ rmative action problems with two groups (majorities and

minorities), using maximum quotas (that is, a maximum number of students for some types)
for even one side may be ine¢ cient and hurt all members of the minority group �the group
which the policy intends to help. In a subsequent paper, Hafalir et al. (2013) study the school
choice problems with a¢ rmative action for minorities. They show the de�ciencies of utilizing
maximum quotas for school choice problems with a¢ rmative action: welfare losses and wasted
seats. Switching the system to DA with minority reserves instead solves the problem of wasted
seats and signi¢ cantly improves students�welfare.
Our model is built upon the matching with contracts model described by Hat�eld and

Milgrom (2005). Hat�eld and Milgrom (2005) connect the matching problem of indivisible
goods and the labor market model. They show that the foundations of a labor market model
where workers can be hired by many alternative contracts (Kelso and Crawford, 1982) are also
achievable in matching markets. This paper is very important because it not only subsumes
and uni�es these two problems but also relates the DA algorithm with �xed point techniques in
lattice theory. In our problem, students do not have to declare their true demographic status
through the privileges that they claim, i.e. a minority student can be admitted as a non-
minority student. Hence, as in a matching with contracts problem, students can be admitted
in di¤erent ways to schools.
The remaning of this chapter is structured as follows. In section 2 we present the mecha-

nism suggested by the Ministry of Education and currently used by the universities surveyed.
In section 3, we introduce the matching with contracts model that we apply to the school
choice problem with a¢ rmative action. In section 4, we introduce the Multidimensional Brazil
Privileges Choice Function and we build upon the choice function de�ned to describe a mecha-
nism �Student Optimal Stable Mechanism �that matches students to colleges in a centralized
way, satis�es stability, is strategy-proof and fair. In section 5, we show that even for a single
college, the currently used Brazil Reserves Choice Function induces a game with multiple Nash
Equilibria in which strategically sophisticated students may obtain advantage by strategizing
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over the privileges that they claim. We also show that the current mechanism is not fair and
cannot guarantee the satisfaction of the a¢ rmative action objectives when they are feasible. In
section 6, we conclude. All the proofs are given in the Appendix section.

2 Brazilian Reserves Choice Function

For the most part, until 2010, college admissions in Brazil worked essentially in a decentralized
way. Students applied for a single program in each university that they desire to (Ex: History
at University of Brasilia or Biology at Federal University of Minas Gerais). By using some
combination of scores in a national exam and sometimes exams particular to those programs, the
universities ranked them and accepted the top applicants to each program up to the programs�
capacities, putting the remaining ones in waiting lists.
Among those accepted, typically some would not enroll because they were also accepted

by other universities and courses of their preference. The universities would then proceed to a
second round, accepting students from the waitlist following their ranking. Depending on the
university this might be followed by third and fourth rounds.
The introduction of the reserves law has not changed the decentralized nature of the system

yet. But the centralized online system used for some universities gives a strong signal that
o¢ cials in charge of college admissions in Brazil are open to utilize a centralized method, which
is shown in many papers to improve e¢ ciency and reduce wasted seats in colleges. On the
other hand, the a¢ rmative action law changed the choice rules of universities in each step in an
attempt to satisfy the a¢ rmative action objectives. The rules used by the universities surveyed
in this work are, essentially, strict implementations (or small variations) of the one suggested
by Brazil�s Ministry of Education. This rule tells the set of students to be chosen from any
set of applicants and will be denoted as the class of Brazil Reserves Choice Function (BRCF).
It suggests that the seats for each program should be split into �ve subsets. For any program
with capacity Q, the �ve distinct subsets are:

� A set Qmi with dQ4 r
me seats which give priority to students who claim public HS, minority

and low-income privileges,

� A set QMi with dQ4 (1 � rm)e seats which give priority to students who claim public HS
and low-income privileges only,

� A set QmI with dQ4 r
me seats which give priority to students who claim public HS and

minority privileges only,

� A set QMI with dQ4 (1 � rm)e seats which give priority to students who claim public HS
privilege only,

� A set Q� with the remaining seats.

where rm is the ratio of minorities in the state where that program (college) is located.
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Given the students who apply for each of those, the ones better ranked on the entrance
exam are accepted up to the capacity of the set. If there are enough applicants for each of
those sets, the a¢ rmative action objectives, as described by the law, are satis�ed. In case the
number of students who apply for some of those sets is smaller than their capacity, those seats
are �lled following the priority structure below:

� If there are seats available in Qmi, those are made available:

� to students claiming low-income and public HS privileges only, then

� to students claiming minority and public HS privileges only, then

� to students claiming public HS privileges only, then

� to any student

� If there are seats available in QMi, those are made available:

� to students claiming low-income, minority and public HS privileges, then

� to students claiming minority and public HS privileges only, then

� to students claiming HS privilege only, then

� to any student

� If there are seats available in QmI , those are made available:

� to students claiming public HS privilege only, then

� to students claiming low-income, minority and public HS privileges, then

� to students claiming low-income and public HS privileges only, then

� to any student

� If there are seats available in QMI , those are made available:

� to students claiming minority and public HS privileges only, then

� to students claiming low-income, minority and public HS privileges, then

� to students claiming low-income and public HS privileges only, then

� to any student

It is not speci�ed, however, in which order those seats are �lled following those priorities4.

4In section 5 we present two actual implementations being used by universities surveyed, clarifying the order
in which those seats are �lled.
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3 The Model

We are dealing with a student-program matching problem where programs have complex priv-
ileges structures and students have more than one way to attend a program. Due to those
characteristics of the problem we will use the matching with contracts model. There are �nite
sets S = fs1; : : : ; sng and P = fp1; : : : ; pmg of students and programs. The set SP � S con-
tains all students in S from public high-schools, Sm � SP contains the racial minority students
from public schools and Si � SP contains the low-income students from public schools. Each
program p has its own capacity level Qp and minority reserve ratio rmp . Each student s has a
vector of exam scores z(s) = (zp1(s); : : : ; zpm(s)) such that zp(s) indicates the score of student s
for program p. For any two students s and s0, zp(s) and zp(s0) are assumed to be di¤erent, that
is, 8s; s0 2 S and p 2 P , zp(s) = zp(s

0) () s = s0. Each student s has a vector of available
privileges she can claim, ts = (tPs ; t

m
s ; t

i
s) where t

P
s ; t

m
s ; t

i
s represents public HS, minority and

low-income privileges, respectively. Each element of ts is binary and 1 means student is eligi-
bile for the privilege and 0 means she is not eligible. For example, if a student is a low-income
non-minority student from public high school, then ts = (1; 0; 1). In the Brazilian system, if
a student claims public HS, minority or low-income privileges she is required to prove those
classi�cations. Therefore, some students may opt not to claim a privilege associated to a group
she belongs to, but students who don�t belong to a group (and therefore can�t prove belonging
to it) are unable to claim that privilege.
Throughout this section we will make use of the matching with contracts notation. A

contract x, in this context, is a tuple (s; p; t), where s 2 S, p 2 P and t = (tP ; tm; ti) � ts.
Vector t represents the set of privileges student claims and tP ; tm; ti are binary and represents
public HS, minority and low-income privileges she claims, respectively. For a contract x; xS,
xP and xT represent student, program and set of privileges s claims in contract x respectively.
Let X be the set of all contracts. For ease of notation, for a set of contracts Y , Yi is the subset
of Y that contains only the contracts that include i 2 S [P . Let s(Y ), moreover, be the set of
students with contracts in Y , that is, s(Y ) = fs 2 S : 9(s; p; t) 2 Y g. An allocation is a set of
contracts X 0 � X, such that for every s 2 S and every p 2 P , jX 0

sj � 1 and jX 0
pj � Qp. Let �

be the set of all possible allocations.
The null contract, meaning that the student has no contract, is denoted by ;. Students have

complete preferences, �, over her contracts and the null contract, Xs[;. These preferences are
derived from students�strict preferences, ��, over programs and being unmatched, in addition
to the fact that they consider irrelevant how they are accepted to a program:

8s 2 S;8p; p0 2 P and t; t0 � ts : (s; p; t) �s (s; p0; t0) () p ��s p0

Next, the choice function of program p, Cp : 2X ! 2X is a function that chooses, that is,
for Y � X, Cp(Y ) � Yp , Cp(Y ) has cardinality at most Qp and has at most one contract
for each student. The assumption about student preferences we mentioned above is one of the
main di¤erences of our paper with the current matching with contracts literature, since our
model allows indi¤erences among contracts, in contrast with the usual assumption of strict
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preferences found in the literature so far. Due to indi¤erences students have between some
contracts, we cannot derive choice functions of students as de�ned in the many to one matching
with contracts models. As a result, instead of choice functions for students, we are going to use
student preferences. Therefore, primitives of our model are student preferences over contracts
and programs�choice functions.
A mechanism is a strategy space �s for each student s along with an outcome function

 :
Y
s2S
�s ! � that selects an allocation for each strategy vector

Y
s2S

�s 2
Y
s2S
�s. Given a

student s and a strategy pro�le �s 2 �s, let ��s denote the strategy of all students except
student s.

4 Student Optimal Stable Mechanism

4.1 The Multidimensional Brazil Privileges Choice Function

One of our objectives is to �nd a choice function that satis�es the a¢ rmative action objectives
for each program, removes incentives for students to strategize over the privileges that they
claim and guarantees the existence of a stable allocation. We also aim to design a mechanism
that carries out our choice function�s properties and �nds a stable allocation.
We are proposing a new choice function, Multidimensional Brazil Privileges Choice Function

(or MCF), in order to allocate students to seats in programs. Unlike the BRCF, our choice
function CMCF obtains the desired incentive characteristics by giving priority in a seat to any
student who can claim the privileges associated with that seat. Also, by doing this, the choice
function satis�es another important criterion: fairness.
Let qp be the number of seats associated with students who claim low-income, minority and

public HS in the BRCF, for program p. For any given set of contracts X, the algorithm which
implements the choice function CMCF is the following:
Phase 0: Program p rejects each contract that does not include itself (xP 6= p =) x =2

Cp(X)).
Phase 1: Program p considers only contracts with xT = (1; 1; 1). Program p accepts

contracts including students with the highest scores zp one at a time and continues until either
all contracts are considered or qp contracts are chosen. In any case, program proceeds with
Phase 2. Let � be qp � jfcontracts accepted in Phase1gj.
Phase 2: Program p considers remaining contracts with xT > (1; 0; 0). Program p ac-

cepts contracts including students with highest scores zp one at a time. During the process,
if constraint (1) or (2) below binds, program p tentatively rejects all the remaining contracts
with the relevant vector of privileges. Then, the program continues accepting contracts one
by one following the order of student scores. Phase 2 ends if all contracts are considered or
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rmp
Qp
2
+ Qp

4
� qp contracts are accepted. Then, the program proceeds with Phase 3.

Possible constraints to bind Rel. vectors of priv.
jfContracts accepted with xT = (1; 0; 1)gj � Qp

4
+ � � qp t = (1; 0; 1) (1)

jfContracts accepted with xT = (1; 1; 0)gj � rmp
Qp
2
+ � � qp t = (1; 1; 0) (2)

Phase 3: In this phase, the program considers all tentatively rejected contracts and all the
remaining contracts with xT � (1; 0; 0). Program p accepts contracts including students with
highest scores zp, one at a time. The program continues until either all contracts are considered
or Qp

2
students are chosen. In any case, it proceeds to Phase 4.

Phase 4: In this phase, the program considers all the remaining contracts. Program p
accepts contracts including students with highest scores zp, one at a time. It continues until
either all contracts are considered or QP students are chosen. Then program terminates the
procedure and rejects all the remaining contracts, if there are any.

4.2 Stability

As in Gale and Shapley (1962) and most of the matching literature, we are interested in stable
allocations. Intuitively, an allocation is stable if students or programs cannot improve upon the
chosen allocation by either walking away from it or by bilaterally making arrangements outside
of the allocation.

De�nition 1 An allocation X 0 is stable if

i: for all s 2 S and for all p 2 P , X 0
s �s ; , Cp(X 0) = X 0

p; and

ii: @(p; s) 2 P � S, and contract x 2 X nX 0, such that

x 2 Cp((X 0 nX 0
s) [ fxg); x �s X 0

s.

One can see that if students have strict preferences over contracts then our stability de�nition
and the one used in the current literature would be equivalent. In order to show the existence
of a stable allocation, we use the substitutes and law of aggregate demand properties de�ned in
Hat�eld and Milgrom (2005) and irrelevance of rejected contracts de�ned in Aygün and Sönmez
(2013).

4.3 Substitutes, IRC, Law of Aggregate Demand and the Student
Optimal Stable Mechanism

In this section, we de�ne the properties which are su¢ cient for existence of a stable allocation
in our college admission problem and show that CMCF () has these properties.
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De�nition 2 Elements of X are substitutes for program p if for all Y 0 � Y 00 � X we have
x 2 Y 0 n Cp(Y 0) =) x 2 Y 00 n Cp(Y 00).

The substitutes condition simply states that if a contract x is rejected, not chosen, in a
set of contracts Y 0 then adding any other contract to Y 0 cannot make x desirable or x should
remain rejected in bigger sets that contain Y 0.

Lemma 3 Elements of X are substitutes for each program p under the choice function CMCF .

De�nition 4 A choice function C satis�es the Law of Aggregate Demand if for all Y 0 �
Y 00 � X we have jC(Y 0)j � jC(Y 00)j.

Under the law of aggregate demand, when more contracts are added to a set of contracts,
the size of the chosen set never shrinks. Since, in any phase of the choice function un�lled seats
are transferred to the next phases, and any student is acceptable to programs, we can state the
following lemma.

Lemma 5 The choice function CMCF satis�es the Law of Aggregate Demand, as de�ned for
each program p.

For many to one matching problems that use choice functions of programs as a primitive,
Aygün and Sönmez (2013) show that the substitutes condition is not su¢ cient to guarantee
existence of stable allocations. Therefore, since our primitive of the model for programs is
choice functions rather than preferences, we use the Irrelevance of Rejected Contracts5 condition
de�ned by Aygün and Sönmez (2013) along with the substitutes condition.

De�nition 6 Given a set of contracts X, a choice function C satis�es the Irrelevance of
Rejected Contracts (IRC) condition if

8Y � X;8x 2 X n Y x =2 C(Y [ fxg) =) C(Y ) = C(Y [ fxg).

The IRC condition simply states that an outcome of the choice function should not be
a¤ected by the removal of rejected contracts. With the help of this condition, Aygün and
Sönmez (2013) show that we can guarantee the existence of stable allocation without the need
for strict preferences of programs over sets of contracts.

Lemma 7 The choice function CMCF satis�es Irrelevance of Rejected Contracts for each pro-
gram p.

Finally, with the help of the conditions above, we can guarantee the existence of a stable
allocation for our student-program matching problem.

5The Irrelevance of Rejected Contracts condition was previously de�ned as �Consistency�in Alkan and Gale
(2001).
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Proposition 8 If all programs use CMCF , the set of stable allocations for student-program
matching problem is not empty.

The choice function de�ned above de�nes only how a single school should behave for a
given set of students. Now, with the help of that choice function, we are ready to introduce the
Student Optimal Stable Mechanism,  SOSM . First, students submit a vector of privileges they
want to claim and preferences �. We then use the student proposing cumulative o¤er algorithm
with submitted vector of privileges (ts)s2S, preferences � and CMCF for each program. The
cumulative o¤er algorithm description we use here was previously introduced by Hat�eld and
Kojima (2010).
Step 1: One randomly selected student s1 o¤ers her �rst choice contract x1 with the

vector of privileges (ts1), according to her preferences �s1. The program that receives the o¤er,
p1 = x1P , holds the contract. Let Ap1(1) = x1, and Ap(1) = ; for all p 6= p1.
In general,
Step k � 2: One of the students for whom no contract is currently held by a program,

say sk, o¤ers the most preferred contract with the vector of privileges (tsk), according to her
preferences �sk , that has not been rejected in previous steps. Call the new o¤ered contract,
xk. Let pk = xkP hold Cpk(Apk(k� 1)[fxkg) and reject all other contracts in Apk(k� 1)[fxkg
. Let Apk(k) = Apk(k � 1) [ fxkg, and Ap(k) = Ap(k � 1) for all p 6= pk.
The algorithm terminates when either every student is matched to a program or every

unmatched student has no contract left with the vector of privileges they submit to o¤er. The
algorithm terminates in some �nite number K of steps due to a �nite number of contracts. At
that point, the algorithm produces X 0 =

[
p2P

Cp(Ap(K)), i.e., the set of contracts that are held

by some program at the terminal step K.
We have already shown that the set of stable allocations is not empty if the choice functions

satisfy the substitutes condition. Our result below shows that the student optimal stable mech-
anism gives us a stable allocation which is one of the main desired properties of a mechanism
in the matching literature.

Proposition 9 The Student Optimal Stable Mechanism,  SOSM , produces a stable allocation
for any given problem.

4.4 Privilege Monotonicity, Fairness and A¢ rmative Action Objec-
tives

An ideal choice function should also satisfy Privilege Monotonicity and fairness. Privilege
Monotonicity suggests that when a student applies to a program, claiming an additional privi-
lege should not decrease her chance to be chosen. With this property, we can state that for any
school, students do not have to gather information and strategize their application processes
with respect to those privileges. Hence, we can level the playing �eld for students.
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De�nition 10 Given a set of contracts X, a choice function C : 2X ! 2X is Privilege
Monotonic if for any given set of contracts Y � X, and any student s with no contract in Y ,

(s; p; ts) =2 Cp(Y [ f(s; p; ts)g) =) (s; p; t0) =2 Cp(Y [ f(s; p; t0)g);8t0 � ts.

Proposition 11 The choice function CMCF is Privilege Monotonic.

Unlike the BRCF, the choice function we design gives students no incentive to leave a
privilege, associate to a group she belongs to, unclaimed. This property will have an important
role in the strategic properties of the mechanism we suggest.

De�nition 12 Given a set of contracts X, a choice function C : 2X ! 2X is fair if for any
given subset Y � X, any program p and x 2 Yp,

x =2 Cp(Y ) =) 8y 2 C(Y ); either zp(yS) > zp(xS) or xT � yT � (1; 0; 0).

Fairness of the choice function as we use here indicates that, if a contract is not chosen this
means that chosen contracts either include students with higher test scores or they are chosen
due to the a¢ rmative action policy.

Proposition 13 The choice function CMCF is fair.

The new law issued in Brazil requires some structure on the sets chosen by programs, with
respect to the groups to which the students belong to. In other words, the ratios associated
with public HS, low-income and minorities should be, when possible, satis�ed by the students
chosen for each program. We formalize this in the de�nition below.

De�nition 14 A choice function Cp : 2X ! 2X satis�es the a¢ rmative action objectives
at program p if 8Y � X:

jfx 2 Cp(Y ) : xT � (1; 0; 0)gj � minf
Qp
2
; jfx 2 Y : xT � (1; 0; 0)gjg;

jfx 2 Cp(Y ) : xT � (1; 0; 1)gj � minf
Qp
4
; jfx 2 Y : xT � (1; 0; 1)gjg;

and jfx 2 Cp(Y ) : xT � (1; 1; 0)gj � minf
rmp Qp

2
; jfx 2 Y : xT � (1; 1; 0)gjg.

The de�nition above states that a choice function must choose a su¢ cient number of students
from all groups of students that are subject to a¢ rmative action, whenever it is possible. One
can check that when qp = 0 our choice function satis�es the a¢ rmative action objectives.
However, when qp = 0 and rmp =

1
2
, all the seats that give priority for those who claim public HS

privilege will be reserved only for those who also claim low-income and/or minority privileges. In
this case, those who claim only public HS privilege will in practice not have any privilege unless
there are not enough applications from those claiming the other combinations of privileges.
Also, students claiming all privileges may not enjoy this advantage unless their scores are high
enough compared to those claiming only two. The current guidelines set by the Brazilian
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government give priority to students claiming only public HS privilege for some seats. Due to
this fact, one can argue that there is an implicit objective that programs should give priority
to all combination of privileges which include public HS for some seats. Since giving priority
to each group may cause incentive problems, our choice function, as a second best, prioritizes
seats to students who claim each such combination of privileges along with all students who
claim some subset of them. For a given program p, let qp be the number of seats associated with
students who claim low-income, minority and public HS in the BRCF. Therefore, if a program
p, receives at least qp contracts with the vector of privileges (1; 1; 1), the program should accept
at least qp contracts with the vector of privileges (1; 1; 1). Otherwise, the program should accept
all contracts available with the vector of privileges (1; 1; 1).

De�nition 15 A choice function Cp : 2X ! 2X satis�es the a¢ rmative action objectives
conditional on qp at program p if 8Y � X:

jfx 2 Y : xT = (1; 1; 1)gj � qp implies

jfx 2 Cp(Y ) : xT � (1; 0; 0)gj � minf
Qp
2
; jfx 2 Y : xT � (1; 0; 0)gjg;

jfx 2 Cp(Y ) : xT � (1; 0; 1)gj � minf
Qp
4
; jfx 2 Y : xT � (1; 0; 1)gjg;

and jfx 2 Cp(Y ) : xT � (1; 1; 0)gj � minf
rmp Qp

2
; jfx 2 Y : xT � (1; 1; 0)gjg.

This second version includes a condition on the number of contracts claiming all privileges.
This conditional satisfaction of the a¢ rmative action objectives requires satisfying them only in
situations where we have enough applications claiming all three privileges, as well as requiring
that the satisfaction of all a¢ rmative action objectives is possible.

Proposition 16 The choice function CMCF satis�es the a¢ rmative action objectives condi-
tional on qp at any program p.

Although depending on the set of contracts available CMCF may not choose a set of contracts
that satis�es the a¢ rmative action objectives, qp can be determined di¤erently for di¤erent
programs. While programs that set low qp minimize the number of cases that fail to give
enough seats to students claiming certain combinations of privileges, programs that set a higher
value for qp give more opportunity to students who claim only the public HS privilege. One
possible way for setting qp is to construct an expected number of applications claiming all three
privileges based on past years�applications.

4.5 Incentives and Fairness of the Student Optimal Stable Mecha-
nism

Although we have shown that the choice function that we proposed satis�es the desired fairness
and incentives properties, we are also interested in knowing whether corresponding properties
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are satis�ed by the overall allocation when the SOSM mechanism is used to match students to
programs. The �rst such property that we introduce is that of fairness.

De�nition 17 An allocation X 0 is fair if for any given pair of contracts x; y 2 X 0

yP ��xS xP =) either zyP (yS) > zyP (xS) or xT � yT � (1; 0; 0).

A mechanism is fair if for any given problem it chooses a fair allocation.

In the previous school choice and student placement literature, like for example in Balinski
and Sönmez (1999), it is shown that stability is su¢ cient for the allocation to satisfy a fairness
condition based on the priorities that students have at the schools. This idea comes from the
fairness of the responsive preferences of schools. As opposed to the previous school choice and
student placement literature, programs in our model do not have responsive preferences. The
non existence of responsive preferences may result in allocations that are not fair as in Balinski
and Sönmez (1999). Therefore, in our problem, the stability of the mechanism is not su¢ cient
for fairness. That is the reason why the fairness satis�ed by our mechanism comes from the
fairness of the choice function.

Proposition 18 The Student Optimal Stable Mechanism,  SOSM , is fair.

The next property that we discuss here is the incentive compatibility of the mechanism,
which is a desired characteristic in mechanism design. Incentive compatibility in this context
can be described as a property that guarantees that students cannot be better-o¤by strategizing
over manipulations of the preferences being submitted or privileges being claimed. In our
problem, students�strategy spaces do not consist only of preferences over schools but also the
privileges claimed. Although it is tempting to conclude that the incentive compatibility of the
SOSM immediately follows as a corollary of the well-known incentive properties of the SOSM
mechanism, due to the wider strategy space for students the result must be obtained explicitly.

De�nition 19 A mechanism is incentive compatible if

@s 2 S; ��s 2
Y

j2Snfsg

�j; (ts;�s); �0 2 �s; such that  (�
0; ��s) �s  ((ts;�s); ��s).

In other words, for any student that we consider, no matter what her true preferences are
or which groups she belongs to, it will be in her best interest to reveal her true preferences
and claim all privileges that she�s eligible to. This is valid for any allocation problem and any
strategies other students report.

Proposition 20 The Student Optimal Stable Mechanism,  SOSM , is incentive compatible.

13



5 Current Mechanism Revisited

So far, we introduced some desired properties that a choice function and a mechanism should
satisfy. In this section, �rst we formally describe two of the choice functions which are imple-
mentations of the guidelines published by the Ministry of Education and currently used by two
of the largest federal universities in Brazil. Next, we show some de�ciencies of those choice
functions and any stable mechanism that uses these choice functions.

5.1 Two Examples of the BRCF

Since the speci�cation given by the guideline allows for di¤erent choice procedures, we can �nd
variation on the universities�implementation of it. We will describe two instances: the choice
function used by the Federal University of Minas Gerais (UFMG) and by the Federal University
of Rio Grande do Sul (UFRGS) .
The implementations by UFMG and UFRGS are in the class of choice functions described

in Westkamp (2013) and Kominers and Sonmez (2012). This relationship is helpful to analyze
our properties.
As we mentioned in section 2, for any program, seats are partitioned into �ve: Qmi, QMi,

QmI , QMI and Q�. For any given program, numbers of seats and priority structure of Qmi,
QMi, QmI and QMI are determined by the current guideline and are as we discussed in section
2. Since it is not possible to know actual demographic backgrounds of students for the priority
structure, both implementations we discussed here takes claims of privileges as demographic
backgrounds of students. For any given set of contracts, the choice function used by UFMG,
CUFMG(), works as the following:
Choice function �lls seats in the following order: Qmi, QMi, QmI , QMI and Q�. For the

priorities of the �rst four group of seats choice function uses priorities described by the current
guideline and for the last group, Q�, it gives priority to contracts with privilege vector (0; 0; 0).
If there are seats available in Q� choice function gives priority

� to contracts with privilege vector (1; 1; 1), then

� to contracts with privilege vector (1; 0; 1), then

� to contracts with privilege vector (1; 1; 0), then

� to contracts with privilege vector (1; 0; 0)

During this procedure, choice function either accepts all the contracts or �lls all the seats.
In any case, choice function stops the procedure and rejects all the remaining contracts, if there
is any.
On the other hand, the choice function used by UFRGS, CUFRGS(), works as the following:
Choice function �lls seats in the following order: Q�, QMI , QmI , QMi and Qmi. For the

priorities of the last four group of seats choice function uses priorities described by the current
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guideline and for the �rst group, Q�, it accepts contracts one at a time based on student scores
starting with the contract of student with highest score. During this procedure, choice function
either accepts all the contracts or �lls all the seats. In any case, choice function stops the
procedure and rejects all the remaining contracts, if there is any.
Once we de�ne these two implementations of the BRCF guidelines, the bilateral substitutes

property of contracts directly comes from the second proposition of Kominers and Sönmez
(2012). Also, since there is only one possible contract for each student to o¤er to a given
program, the choice over contracts satis�es the substitutes condition. Moreover, since each
contract is acceptable to all slots, with a bigger contract sets the set of contract chosen never
shrinks. Therefore, CUFMG and CUFGRS satisfy the Law of Aggregate Demand. Hence, if
all programs use one of the implementations above, the existence of a stable allocation is
guaranteed by Proposition 1 of Aygün and Sönmez (2013).

5.2 Two Examples of the BRCF

The two implementations of the guidelines designed by the Brazilian government are instances
of choice functions described in Westkamp (2013) and Kominers and Sönmez (2012). Since
these choice functions are designed for a single contract for each student, like CMCF , contracts
are not only bilateral substitutes, a weak version of substitutes condition, as shown in Kominers
and Sönmez (2012) but also substitutes for each program. But these choice functions, unlike
CMCF , fail to satisfy the fairness and privilege monotonicity properties. They also don�t satisfy
the a¢ rmative action objectives conditional on qp. We show, using examples, how these choice
functions violate these three conditions. We start with privilege monotonicity.

Example 21 [Privilege Monotonicity] For a given program p let Qp = 8 , rmp =
1
2
and let the

set of contracts be Y = fx1; : : : ; x8g such that x1T = x2T = x3T = x4T = (0; 0; 0), x
5
T = (1; 0; 0),

x6T = (1; 1; 1), x
7
T = (1; 1; 0) and x

8
T = (1; 0; 1). Also let zp(x

i
S) > zp(x

j
S) () i < j. Consider

a low-income minority student from public high school s =2 s(Y ) with score zp(s) > z(x8S). If she
applies with a contract that includes all of her privileges, i.e. (s; p; (1; 1; 1)), no matter which
example of the BCRF program p uses, she will be rejected:

(s; p; (1; 1; 1)) =2 Cp(Y [ f(s; p; (1; 1; 1))g) = fx1; x2; x3; x4; x5; x6; x7; x8g

However, if she claims only low-income and public HS privileges, i.e. (s; p; (1; 0; 1)), no matter
which implementation of BRCF program p uses, her contract will be accepted:

(s; p; (1; 0; 1)) 2 Cp(Y [ f(s; p; (1; 0; 1))g) = fx1; x2; x3; x4; x5; x6; x7; (s; p; (1; 0; 1))g

Therefore, the two examples of the BRCF are not privilege monotonic.

The example above shows that since the choice function gives priority to students who claim
low-income and public HS only, the choice function gives student s incentive not to claim her
minority privilege. This problem can be solved by using CMCF instead. CMCF gives students
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equal or higher chances to be chosen when their contracts compete with others that has a subset
of the privileges that she claims. Hence students have no incentive not to claim privileges. The
second example we give regards the fairness property of choice functions.

Example 22 [Fairness] For a given program p let Qp = 8, rmp =
1
2
and let the set of contracts be

Y = fx1; : : : ; x9g such that x1T = x2T = x3T = x4T = (0; 0; 0), x
5
T = x6T = (1; 1; 1), x

7
T = (1; 0; 1),

x8T = (1; 1; 0) and x
9
T = (1; 0; 0). Also let zp(x

i
S) > zp(x

j
S) () i < j. In this case, no matter

which example of the BCRF program p uses, the chosen set will be:

Cp(Y ) = fx1; x2; x3; x4; x5; x7; x8; x9g

Let x6S = j. Since student j can o¤er x6, we can say that tj = (1; 1; 1) and (1; 0; 0) < tj. Also,
by assumption, she has higher score than owner of contract x9. Therefore, rejecting x6 while
accepting x9, violates fairness of the choice function.

In this second example, the program p chooses x9, although student j has higher score and
claims more privileges than privileges claimed in x9. This example tells us that the guideline
provided by the government implicitly tries to provide diversity in the chosen students even
when the law does not require it. On the other hand, CMCF only gives priority to students to
which the a¢ rmative action is addressed to. Therefore, CMCF prevents any fairness problems.
The next example is about the relationship between choice functions and the a¢ rmative action
objectives.

Example 23 [A¢ rmative Action conditional on qp] For a given program p let Qp = 8, rmp =
1
2

and let the set of contracts be Y = fx1; : : : ; x9g such that x1T = x2T = x3T = x4T = (0; 0; 0),
x5T = x6T = (1; 0; 0), x

7
T = x8T = (1; 1; 1) and x

9
T = (1; 0; 1). Also let zp(x

i
S) > zp(x

j
S) () i < j.

In both implementations of the BRCF guidelines, the number of seats with priority for students
who claim all the 3 privileges is 1 and one seat accepts a contract with privilege vector (1; 0; 0)
since there is no contract claiming minority and public HS privileges only. If the set of contracts
is Y , no matter which example of the BRCF program p uses, the chosen set will be:

Cp(Y ) = fx1; x2; x3; x4; x5; x6; x7; x9g

Therefore, the choice function chooses only one student claiming minority and public HS privi-
leges, although it is possible to choose two, which is the number of seats with priority for students
claiming those privileges.

Another problem with the BRCF is that it considers students claiming public HS privilege
only as the �rst order substitutes for students claiming minority and public HS privileges
only. Therefore, when there is an absence of applications from contracts with privilege vector
(1; 1; 0), the choice function turns to contracts with privilege vector (1; 0; 0) and ignores the
priority for minorities. In the example above, one of the students claiming only public HS
privilege receives the seat with priority for those claiming minority and public HS privileges.
Hence, implementations of the BRCF fail to satisfy the a¢ rmative action objectives conditional
on qp.
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Now, we will show that if programs adopt one of the implementations of BRCF above,
no matter what algorithm one chooses in order to create a stable mechanism, the mechanism
violates the properties we de�ned above. Previous papers have shown us that some of the
de�ciencies of choice functions can be corrected by choosing the right algorithm. One example
of this is the choice function used by the U.S. Military Academy (USMA). Sönmez and Switzer
(2013) have shown us that the USMA priorities may fail to satisfy fairness, but than when they
use the cumulative o¤er algorithm the outcome of the mechanism is always fair. However, the
following two examples show that violations of incentive compatibility and fairness are carried
by any stable mechanism.

Example 24 [Incentive Compatibility] There is one program p with capacity of eight seats and
nine students S = fs1; : : : ; s9g. Let rmp = 1

2
and p be preferred to the null contract by every

student. The score order of students is given by zp(si) > zp(sj) () i < j. Also, vectors of
privileges available to students are given by

ts1 = ts2 = ts3 = ts4 = (0; 0; 0)

ts5 = ts6 = (1; 1; 1)

ts7 = (1; 0; 0)

ts8 = (1; 1; 0)

ts9 = (1; 0; 1)

For this problem, if every student claims all of the privileges that she is eligible to, there is only
one stable allocation, X 0, that we can achieve if program p uses one of the implementations of
the current BRCF. The set of students assigned is the following:

s(X 0) = fs1; s2; s3; s4; s5; s7; s8; s9g

Now, assuming that the other students use the same strategy as before, if s6 claims only public
HS privilege and submits (s6; p; (1; 0; 0)), there is again only one stable allocation, say X 00, that
we can achieve if the program p uses one of the implementations of the current BRCF and the
set of students assigned is the following:

s(X 00) = fs1; s2; s3; s4; s5; s6; s8; s9g

Therefore, any stable mechanism with these two examples of the BRCF are not incentive com-
patible.

The example above shows that since these choice functions give priority to students who
claim a subset of the privileges that s6 is eligible to for some of the seats available, they may
give student s6 an incentive not to claim all of her privileges. This not only puts a burden on
students to gather more information about their peers and strategize their behavior in order
to get better assignments, but also gives some students an unfair advantage in their college
applications. Also, violation of incentive compatibility causes an allocation to be chosen which
is actually (with respect to the groups to which the students belong to) unstable. It also makes
it harder to observe the e¤ect of this a¢ rmative action policy for future decisions over it. The
last example we give relates to the fairness property of mechanisms.
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Example 25 [Fairness] There are one program p with capacity of eight seats and nine students
S = fs1; : : : ; s9g. Let rmp = 1

2
and p be preferred to the null contract for each student. The

score order of students is given as zp(si) > zp(sj) () i < j. Also, the vectors of privileges
available to students are given by

ts1 = ts2 = ts3 = ts4 = (0; 0; 0)

ts5 = ts6 = (1; 1; 1)

ts7 = (1; 0; 0)

ts8 = (1; 1; 0)

ts9 = (1; 0; 1)

For this problem, if every student claims all the privileges that they are eligible to, there is only
one stable allocation, say X 0, that we can achieve if the program p uses one of the implemen-
tations of the current BRCF and the set of students assigned is the following:

s(X 0) = fs1; s2; s3; s4; s5; s7; s8; s9g

Since student s6 is eligible to claim all privileges and she has higher score than s7,s8 and s9,
rejecting (s6; p; (1; 1; 1)) while accepting (s7; p; (1; 0; 0)), violates fairness. This result holds no
matter what kind of algorithm we use that gives stable allocation with these two implementations
of the BRCF.

6 Concluding Remarks

In this paper, we presented a new market design application of university program-student
matching that emerged as result of the a¢ rmative action policy that was designed by the
Brazilian government to aid minority and low-income students from public high schools. This
problem is particularly interesting in the sense that the freedom of not claiming all of the
privileges that a student is eligible to during the application process combines the matching
and the adverse selection problems. Due to this fact, we de�ned the property of privilege
monotonicity for choice functions for the �rst time in this literature.
This paper shows that the current guidelines for designing choice functions for programs have

avoidable de�ciencies, such as generating unfair allocations and giving sophisticated students
an advantage over others by manipulating the system.
We proposed a new choice function, denoted the multidimensional Brazil privileges choice

function, that can also be used together with the student optimal stable mechanism to gener-
ate student assignments. The choice function is privilege monotonic and fair unlike the current
choice functions which are implementations of the guidelines designed by the Brazilian govern-
ment. Moreover, the mechanism we suggest is incentive compatible, fair and yields a stable
allocation for any problem.
With a complex privileges structure like we have in this problem, it is hard to satisfy the

a¢ rmative action objectives in all cases. We showed that the current choice functions used
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by programs in Brazil not only fails to satisfy the a¢ rmative action objectives when they are
possible but also fails to satisfy a weaker condition that imposes some restrictions over the
population of students applying to a program. On the other hand, the choice function we
suggest always satis�es that weaker condition and if the parameters for the choice function is
selected correctly, the diversity targets in the programs are reached by our procedure.
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8 Appendix

Proof. [Proof of Lemma 7] For any set of contracts Y and any phase i, let Yk be set of contracts
that is considered in phase k. Think about the procedure:
Phase 1. First observe that Y 0

1 � Y 00
1 . If a contract x is not accepted in the �rst phase then

either x =2 Y 0
1 or we have

jfy 2 Y 0
1 : zp(yS) > zp(xS)gj � qp:

Therefore, either x =2 Y 00
1 , or Y

0 � Y 00 implies

jfy 2 Y 00
1 : zp(yS) > zp(xS)gj � qp:

Hence contract x can not be accepted from Y 00 in the �rst phase as well. So, we have Y 0
2 � Y 00

2 .
Phase 2. Let �0 and �00 be number of unused seats in Phase 1 when we use Y 0 and Y 00,

respectively. As Y 0
1 � Y 00

1 , we have �
0 � �00. If a contract x is not accepted in the second phase

then either x =2 Y 0
2 which means x =2 Y 00

2 , or we have three cases
Case 1: If xT = (1; 1; 1), we have

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �0 � qpg+

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj;

Qp
4
+ �0 � qpg+

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �0 � 2qp

Therefore, Y 0
2 � Y 00

2 implies

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �00 � qpg+

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj;

Qp
4
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

as well. Hence, contract x can not be accepted from Y 00 in the second phase as well.
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Case 2: If xT = (1; 1; 0), we have either

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj � rmp

Qp
2
+ �0 � qp; or

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj+

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) s.t. yT = (1; 0; 1)gj;

qc
4
+ �0 � qg+

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �0 � 2qp.

Therefore, Y 0
2 � Y 00

2 implies

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj � rmp

Qp
2
+ �00 � qp; or

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj;

qc
4
+ �00 � qg+

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

as well. Hence, contract x can not be accepted from Y 00 in the second phase as well.
Case 3: If xT = (1; 0; 1), we have either

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj �

qc
4
+ �0 � q; or

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj+

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �0 � qpg+

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �0 � 2qp.

Therefore, Y 0
2 � Y 00

2 implies

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj �

qc
4
+ �00 � q; or

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

as well. Hence, contract x can not be accepted from Y 00 in the second phase as well. So
any contract x that is not accepted from Y 0 in Phase 2, is not accepted from Y 00 in Phase 2.
Moreover, that guarantees Y 0

3 � Y 00
3 .

Phase 3. Let �01 and �
00
1 be the number of unused seats in Phase 2 when we use Y

0 and Y 00,
respectively. As Y 0

2 � Y 00
2 , we have �

0
1 � �001. If a contract x is not accepted in the third phase

then either x =2 Y 0
3 which means x =2 Y 00

3 , or we have

jfy 2 Y 0
3 : zp(yS) > zp(xS)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �01.
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Therefore, Y 0
3 � Y 00

3 implies

jfy 2 Y 00
3 : zp(yS) > zp(xS)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �001

as well. Hence, contract x can not be accepted from Y 00 in the third phase as well. So any
contract x that is not accepted from Y 0 in Phase 3, is not accepted from Y 00 in Phase 3.
Moreover, that guarantees Y 0

4 � Y 00
4 .

Phase 4. Let �02 and �
00
2 be number of unused seats in Phase 3 when we use Y

0 and Y 00,
respectively. As Y 0

3 � Y 00
3 , we have �

0
2 � �002. If a contract x is not accepted in the fourht phase

then we have

jfy 2 Y 0
4 : zp(yS) > zp(xS)gj �

Qp
2
+ �02.

Therefore, Y 0
4 � Y 00

4 implies

jfy 2 Y 00
4 : zp(yS) > zp(xS)gj �

Qp
2
+ �002

as well. Hence, contract x can not be accepted from Y 00 in the last phase as well. So, any
contract x that is not accepted from Y 0 in Phase 4 is not accepted from Y 00 in Phase 4.
A contract x is rejected in set Y 0 means that x must not be accepted in any phase of the

procedure. Above, we showed that for any phase if a contract is not accepted from Y 0, it can
not be accepted from Y 00. Therefore, if a contract is rejected from set Y 0 it must be rejected
from set Y 00. Hence, contracts are substitutes for any program.
Proof. [Proof of Lemma 8] By construction of the choice function CMCF (), all contracts of a
given student can be rejected from a set only when school reaches full capacity. Hence, the size
of the chosen set can never shrink as the set of available contracts grows.
Proof. [Proof of Lemma 9] The choice function for any program p satis�es the substitutes
condition by Lemma 1 and satis�es the Law of Aggregate Demand by Lemma 2. Hence,
Lemma 3 is a corollary of Proposition 1 in Aygun and Sonmez (2013)
Proof. [Proof of Proposition 8] To proof this proposition we use a parallel problem where each
student s has preference, �tss , over contracts with ts and all other contracts are unacceptable
for s. The choice function for any program p satis�es the substitutes condition by Lemma
1 and satis�es Irrelevance of Rejected Contracts by Lemma 3. Therefore, as a corollary of
Theorem 1 in Aygun and Sonmez (2013), there is a stable allocation for a problem consists of
(�tss )s2S and (CMCF

p ())p2P . Let one of possible stable allocations for the parallel problem be
X 0. We next show that X 0 is a stable allocation for our original problem consists of (�s)s2S
and (CMCF

p ())p2P .
Assume this is not true. Then there exists a student-program pair (s; p) and a contract x

such that

x 2 X nX 0; xS = s and xP = p

x 2 Cp((X
0 nX 0

s) [ fxg) and x �s X 0
s.

Due to privilege monotonicity property of CMCF
p , we can �nd a contract y such that

y 2 X nX 0; yS = s; yP = p and yT = ts

y 2 Cp((X
0 nX 0

s) [ fyg) and y �s X 0
s
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which contradicts with the stability of X 0 for the parallel problem. Hence, X 0 is a stable
allocation for original matching problem consists of (�s)s2S and (CMCF

p ())p2P .
Proof. [Proof of Proposition 9] Think about �ve cases:
Case 1: Let ts = (1; 1; 1). Assume that her contract, x0, such that x0T = ts, is rejected. Now,

we are going to show that another contract of her, x, such that xT < ts, must be rejected. For
a given program p, let x0 = (s; p; ts) and x = (s; p; t0) where t0 < ts and let Y 0 = Y [ fx0g and
Y 00 = Y [ fxg. First, observe that if her contract x0 is rejected from set Y 0, then her contract
is not chosen in any phase. Therefore, �0, �01 and �

0
2 are all zero since she is considered in all

phases. Assume that she o¤ers contract x instead of x0.
Phase 1: If t0 < (1; 1; 1) then x is not considered in the �rst phase. Moreover, since her

contract x0 is rejected from set Y 0, there are at least qs contracts in Y with the privilege vector
(1,1,1). Therefore, �0 = �00 = 0 and = (Y 0

2 n fx0g) � Y 00
2 .

Phase 2: Observe that if x is rejected from set Y 0, then we have

minfjfy 2 Y 0
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �0 � qpg+

minfjfy 2 Y 0
2 : zp(yS) > zp(s) and yT = (1; 0; 1)gj;

Qp
4
+ �0 � qpg+

jfy 2 Y 0
2 : zp(yS) > zp(s) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
� 2qp

If t0 = (1; 1; 0), in the second phase we have either

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj � rmp

Qp
2
+ �00 � qp or

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(j) and yT = (1; 0; 1)gj;

Qp
4
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
� 2qp

Therefore, x can not be accepted in the second phase. If t0 = (1; 0; 1), in the second phase
we have either

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 0; 1)gj �

Qp
4
+ �00 � qp or

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 0; 1)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

Therefore, x can not be accepted in the second phase. If t0 � (1; 1; 0) or t0 � (1; 0; 1), x will
not be considered in the second phase, therefore it cannot be accepted in this phase. Hence,
no other available contract of student s can be chosen in this phase. Also, �01 = �001 = 0 and
(Y 0
3 n fx0g) � Y 00

3 .
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Phase 3: Observe that if x is rejected from set Y 0, then we have

jfy 2 Y 0
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp

If (1; 0; 0) � t0 < (1; 1; 1), in the third phase we have

jfy 2 Y 00
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp

Therefore, x can not be accepted in the third phase. If t0 � (1; 0; 0), x will not be considered
in the third phase, therefore it cannot be accepted in this phase. Hence, no other available
contract of student s can be chosen in this phase. Also �02 = �002 = 0 and (Y

0
4 n fx0g) � Y 00

4 .
Phase 4: First, observe that if x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2

If t0 < (1; 1; 1), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2

Therefore, x can not be accepted in the fourth phase. Hence, no other available contract of
student s can be chosen.
Case 2: If ts = (1; 1; 0) and her contract x0 is rejected we can show that x is not chosen in

any phase.
Phase 1 and 2: If t0 < (1; 1; 0), then x is not considered in the �rst two phases. So, it can

not be accepted in the these phases. Also �01 = �001 and (Y
0
3 n fx0g) � Y 00

3 .
Phase 3: As contract x0 is rejected from set Y 0, we have

jfy 2 Y 0
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �01

If t0 � (1; 0; 0), then x is not considered in this phase, so it can not be accepted in phase 3.
If t0 = (1; 0; 0), then in the third phase we have

jfy 2 Y 00
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �001

Therefore, x can not be accepted in the third phase. Hence, no other available contract of
student s is chosen. Also �02 = �002 and (Y

0
4 n fx0g) � Y 00

4 .
Phase 4: As contract x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2
+ �02

If t0 < (1; 1; 0), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2
+ �002
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Therefore, x can not be accepted in the fourth phase. Hence, no other available contract of
student s is chosen.
Case 3: If ts = (1; 0; 1) and her contract x0 is rejected we can show that x is not chosen in

any phase.
Phase 1 and 2: If t0 < (1; 0; 1), then x is not considered in the �rst two phases. So, it can

not be accepted in the these phases. Also �01 = �001 and (Y
0
3 n fx0g) � Y 00

3 .
Phase 3: As contract x0 is rejected from set Y 0, we have

jfy 2 Y 0
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �01

If t0 � (1; 0; 0), then x is not considered in this phase, so it can not be accepted in phase 3.
If t0 = (1; 0; 0), then in the third phase we have

jfy 2 Y 00
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �001

Therefore, x can not be accepted in the third phase. Hence, no other available contract of
student s is chosen. Also �02 = �002 and (Y

0
4 n fx0g) � Y 00

4 .
Phase 4: As contract x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2
+ �02

If t0 < (1; 0; 1), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2
+ �002

Therefore, x can not be accepted in the fourth phase. Hence, no other available contract of
student s is chosen.
Case 4: If ts = (1; 0; 0) and her contract x0 is rejected we can show that x is not chosen in

any phase.
Phase 1,2 and 3: If t0 < (1; 0; 0), then x is not considered in the �rst three phases. So, it

can not be accepted in the these phases. Also �02 = �002 and (Y
0
4 n fx0g) � Y 00

4 .
Phase 4: As contract x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2
+ �02

If t0 < (1; 0; 1), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2
+ �002

Therefore, x can not be accepted in the fourth phase. Hence, no other available contract of
student s is chosen.
Case 5: If ts � (1; 0; 0), then x, like x0, is only considered in the last phase and can not be

chosen since the set of other contracts considered in this phase are identical for Y 0 and Y 00.

25



Therefore, (s; p; ts) =2 Y 0 guarantees (s; p; t0) =2 Y 00, for any t0 < ts. Hence, Choice function
is privilege monotonic.
Proof. [Proof of Proposition 10] For any arbitrary set of contracts Y , owner of any rejected
contract x such that xT = (1; 1; 1), has lower score than owners of chosen contracts. So,
x =2 CMCF

p (Y ) and xT = (1; 1; 1) =) 8y 2 CMCF
p (Y ); zp(yS) > zp(xS).

For any rejected contract x such that xT = (1; 0; 1), the only possible two types of contracts
that is chosen and with lower score than x are contracts with privilege vector (1; 1; 1) or (1; 1; 0).
But, since xT � (1; 1; 1), xT � (1; 1; 0) and owners of other chosen contracts have higher scores
than owner of x, we have x =2 CMCF

p (Y ) and xT = (1; 0; 1) =) 8y 2 CMCF
p (Y ); zp(yS) > zp(xS)

or xT � yT � (1; 0; 0).
For any rejected contract x such that xT = (1; 1; 0), the only possible two types of contracts

that is chosen and with lower score than x are contracts with privilege vector (1; 1; 1) or (1; 0; 1).
But, since xT � (1; 1; 1), xT � (1; 0; 1) and owners of other chosen contracts have higher score
than owner of x, we have x =2 CMCF

p (Y ) and xT = (1; 1; 0) =) 8y 2 CMCF
p (Y ); zp(yS) > zp(xS)

or xT � yT � (1; 0; 0).
For any rejected contract x such that xT = (1; 0; 0), the only possible types of contracts

that is chosen and with lower score than x are contracts with privilege vector (1; 1; 1); (1; 1; 0)
or (1; 0; 1). But, since xT � (1; 1; 1), xT � (1; 1; 0), xT � (1; 0; 1) and owners of other chosen
contracts have higher score than owner of x, we have x =2 CMCF

p (Y ) and xT = (1; 0; 0) =)
8y 2 CMCF

p (Y ); zp(yS) > zp(xS) or xT � yT � (1; 0; 0).
For any rejected contract such that xT � (1; 0; 0), owners of chosen contracts with privilege

vector greater than or equal to (1; 0; 0) may have lower score than owner of x. Also, owners of
other chosen contracts have higher score than owner of x. Therefore, we have x =2 CMCF

p (Y )
and xT =� (1; 0; 0) =) 8y 2 CMCF

p (Y ); zp(yS) > zp(xS) or xT � yT � (1; 0; 0). Hence for any
type of contract, x =2 CMCF

p (Y ) =) 8y 2 CMCF
p (Y ); zp(yS) > zp(xS) or xT � yT � (1; 0; 0).

Proof. [Proof of Proposition 11] For a given program p and given set of contracts Y , let

jfx 2 Y : xT = (1; 1; 1)gj � qp:

In the �rst phase qp contracts with privilege vector xT = (1; 1; 1) will be accepted. In the
second phase, a contract will be accepted whenever it is in top

rmp Qp

2
� qp among contracts

claiming minority and public HS privilege, i.e. xT � (1; 1; 0), in Y2. Therefore, in the second
phase at least

rmp Qp

2
�qp and in total at least

rmp Qp

2
contracts with xT � (1; 1; 0) will be accepted,

otherwise all contracts with xT � (1; 1; 0) will be accepted. Hence,

jfx 2 Cp(Y ) : xT � (1; 1; 0)gj � minf
rmp Qp

2
; jfx 2 Y : xT � (1; 1; 0)gjg.

will be satis�ed.
Next, consider contracts with xT � (1; 0; 1). In the �rst phase qp contracts with privilege

vector xT = (1; 1; 1) will be accepted. In the second phase, a contract will be accepted whenever
it is in top Qp

4
� qp among contracts claiming low-income and public HS privilege, i.e. xT �

(1; 0; 1), in Y2. Therefore, in the second phase at least
Qp
4
� qp and in total at least Qp4 contracts
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with xT � (1; 0; 1) will be accepted, otherwise all contracts with xT � (1; 0; 1) will be accepted.
Hence,

jfx 2 Cp(Y ) : xT � (1; 0; 1)gj � minf
Qp
4
; jfx 2 Y : xT � (1; 0; 1)gjg:

will be satis�ed.
Finally, consider contracts with xT � (1; 0; 0). In the �rst two phases

rmp Qp

2
+ Qp

4
� qp � �01

contracts with with privilege vector xT > (1; 0; 0), will be accepted. In the third phase, all the
contracts with xT = (1; 0; 0) and all the tentatively rejected contracts in phase 2 are considered.
In this phase, a contract will be accepted whenever it is in top Qp

4
� rmp Qp

2
+ qp among contracts

with xT � (1; 0; 0) in Y3. Therefore, in the third phase at least Qp
4
� rmp Qp

2
+ qp and in total at

least Qp
2
contracts with xT � (1; 0; 0) will be accepted, otherwise all contracts with xT � (1; 0; 0)

will be accepted. Hence,

jfx 2 Cp(Y ) : xT � (1; 0; 0)gj � minf
Qp
2
; jfx 2 Y : xT � (1; 0; 0)gjg:

will be satis�ed.
Proof. [Proof of Proposition 12] The contracts are substitutes for any program p by Lemma 1
and choice functions satisfy IRC condition by Lemma 3. Therefore, as a corollary of Theorem 3
in Hat�eld and Milgrom (2005) and Theorem 1 in Aygun and Sonmez (2013), SOSM produces
a stable allocation for student preferences for a problem consists of (�tss )s2S and (CMCF

p ())p2P .
Moreover, as we showed in the proof of Proposition 1, the stable allocation SOSM produces
is also stable for the original problem consists of (�tss )s2S and (CMCF

p ())p2P . Hence, for any
problem, the outcome of SOSM is stable.
Proof. [Proof of Proposition 13] Assume that is not true. So, we can �nd x; y 2 X 0 such that
yP ��xS xP , zyP (yS) < zyP (xS) and xT > yT . Since we have yP ��xS xP , there exist a contract
x0 such that x0 = (xS; yP ; txS) and x

0 ��xS x. By the design of cumulative o¤er algorithm, x
0

must be o¤ered by xS and be rejected before the �nal step K. Therefore, at step K, we have
y; x0 2 AyP (K) and X

0
yP
= CMCF

yP
(AyP (K)). Since contracts are substitutes for each program

and x0 is rejected before the �nal step K, x0 =2 CMCF
yP

(AyP (K)) must be true. By fairness
condition of choice function

x0 =2 CMCF
yP

(AyP (K)) =) zyP (yS) > zyP (x
0
S) or xT � yT

a contradiction. Hence  SOSM , is fair.
Proof. [Proof of Proposition 14] For an arbitrary student s, assume that �0 = (t0;�0s) 6= (ts;�s).
Let her assigned program from  SOSM(�0; ��s) be p�. Also, let �

00 be a strategy with privilege
vector t0 and preference with only contract (s; p�; t0) is acceptable. Since choice functions satis�es
substitutes condition by Lemma 1 and Law of Aggregate Demand by Lemma 2, student s gets
same assignment from  SOSM(�00; ��s). This part is a corollary of Theorem 10 in Hat�eld and
Milgrom (2005).
Now, let �000 be a strategy with privilege vector ts and preference with only (s; p�; ts) is accept-

able. Due to privilege monotonicity of choice functions, her assignment from  SOSM(�000; ��s)
must be (s; p�; ts).
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Finally, since for any given type pro�le choice function satis�es substitutes condition by
Lemma 1 and Law of Aggregate Demand by Lemma 2, we know that students can not manip-
ulate student optimal stable mechanism by submitting di¤erent preferences, i.e.  SOSM((ts;�s
); ��s) �s  SOSM(�000; ��s), by Theorem 11 in Hat�eld and Milgrom (2005). So we have;

 SOSM((ts;�s); ��s) �s  SOSM(�000; ��s) �s  SOSM(�00; ��s) �s  SOSM(�0; ��s)

Therefore for any �0,
 SOSM(�0; ��s) �s  SOSM((ts;�s); ��s)

Hence  SOSM is incentive compatible.
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