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Abstract

The willpower as limited cognitive resource model has been proposed by experimental psy-

chologists and used by economists to capture lack of self control and explain various behavioral

paradoxes. This paper provides the first behavioral foundation for the limited willpower model

which bridges the standard utility maximization and the Strotz models. In our model, we

observe the agent’s ex-ante preferences and ex-post choices and derive a representation that

captures key behavioral traits of willpower constrained decision making. When the willpower

stock is not too high or too low, choices reflect a compromise between the ex-ante preference and

ex-post temptation and violate WARP. In a riskless domain, we provide simple axioms that give

a clean comparison with other self control models. In the lottery domain, our characterization

has stronger uniqueness properties. We illustrate by means of an IO application that the model

is tractable and provides distinct insights.

1 Introduction

Standard theories of decision making assume that people choose what they prefer and prefer what

they choose. However, introspection suggests that implementation of choice may not be automatic

and there is often a wedge between preferences and actual choices. Recently psychologists and

economists have emphasized the lack of self control in decision making as an important reason

for this wedge.1 When people face temptation, they make choices that are in conflict with their

commitment preferences. Procrastination, impulse purchases, and succumbing to the temptation

of unhealthy foods are some common examples of such behavior.

∗We would like to thank Kfir Eliaz, Collin Raymond, Larry Samuelson, Joel Sobel, Rani Spiegler, Tomasz Strza-
lecki, and Neslihan Uler. Parts of this research were conducted while Masatlioglu was visiting the Institute for
Advanced Studies at Hebrew University. Nakajima appreciates the financial support provided by Japan Society for
the Promotion of Science (JSPS KAKENHI Grant Number 26780113).
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‡Otaru University of Commerce. Email: nakajima@res.otaru-uc.ac.jp.
§London Business School. Email: eozdenoren@london.edu.
1Models of self-control problems include quasi-hyperbolic time discounting (e.g., Laibson (1997); O’Donoghue and

Rabin (1999)), temptation costs (e.g., Gul and Pesendorfer (2001, 2004)), and conflicts between selves or systems
(e.g., Shefrin and Thaler (1988); Bernheim and Rangel (2004); Fudenberg and Levine (2006)).
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People do not always succumb to temptation and are sometimes able to overcome temptations by

using cognitive resources. This ability is often called willpower.2 There is a growing experimental

psychology literature demonstrating that willpower is a limited resource, and it is more than a mere

metaphor (e.g., Baumeister and Vohs (2003); Faber and Vohs (2004); Muraven et al. (2006).)3

In this paper we propose a simple and tractable model to capture limited willpower and provide

behavioral foundations for it that allow us to go beyond simple intuition, understand what type of

observed behavior would characterize the limited willpower model, and pave the way for designing

new experiments to test the willpower theory. Moreover, the representation theorem gives a precise

meaning to the term willpower stock. We use the model to study an example of monopolistic

contracting where consumers have limited willpower but are unaware of their willpower problems.

The example illustrates that the limited willpower model has policy related implications that are

distinct from those of other models of self-control.

In Section 2, we present the limited willpower model which is based on three ingredients. The first,

commitment utility u, represents the decision maker’s (henceforth DM) commitment preferences.

The other two ingredients are temptation values v and the willpower stock w which jointly determine

how actual choices depart from what commitment utility would dictate. The key to determining

the actual choice is the willpower constraint. Specifically, the DM is able to consider an alternative

x from a set A only if maxy∈A v(y)− v(x) ≤ w. Otherwise, she does not have enough willpower to

choose this alternative. The DM then picks the alternative that maximizes her commitment utility

from the set of alternatives that satisfies the willpower constraint. Formally, the ex-post choice

from a set A is the outcome of the following maximization problem:

max
x∈A

u(x) subject to max
y∈A

v(y)− v(x) ≤ w

The limited willpower model bridges the standard utility maximization and the Strotz models.

When the willpower stock is very large, the willpower-constrained DM behaves like a standard

agent who chooses the most preferred alternative (according to u). When the willpower stock is

lower, the constraint starts to bind and a wedge between preferences and choices appears – the DM

can only choose alternatives that are close enough, in terms of temptation, to the most tempting

one. In the other extreme, when the willpower stock is very low, the DM behaves like a Strotzian

2Loewenstein (2000) emphasizes the role of both positive and negative visceral urges in generating the wedge
between choice and preference. Following self-control literature we focus on temptations or positive visceral urges.
However similar issues are relevant when individuals face fear or guilt inducing alternatives that cause negative
visceral reactions. In those cases willpower might be necessary to motivate oneself to choose an alternative that
causes a more intense negative urge than another feasible alternative.

3Models motivated by these experiments have been used by economists to capture lack of self-control (Ozdenoren
et al. (2012); Fudenberg and Levine (2012)) in a dynamic settings. In those models agents take into account willpower
consequences of their current choices for their future choices.
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agent who always succumbs to temptation. Notice that the DM’s choice will satisfy WARP in the

two extreme cases for different reasons. While in the former choices reflect the ex-ante preference

alone, in the latter, temptation ranking solely determines the choices. In comparison, in the limited

willpower case, when the willpower stock is not too high or too low, choices reflect a compromise

between the ex-ante preference and the temptation ranking and violate WARP. To see this suppose

there are three alternatives, one alternative (x) is ex-ante best but least tempting, a second (z) is

ex-ante worst but most tempting and a third (y) is in the middle both in terms of ex-ante preference

and temptation. A standard DM chooses x and a Strotzian agent chooses z from {x, z} and from

{x, y, z}, and in both cases WARP will be satisfied. A DM with limited willpower may choose z

from {x, z} and y from {x, y, z} violating WARP.4 Such behavior, resembling the compromise effect,

occurs when the DM does not have enough willpower to choose the least tempting alternative, but

has enough willpower to choose the moderately tempting alternative.

To derive the limited willpower representation, we use a novel data set given by the DM’s ex-

ante preferences (%) and ex-post choices (c).5 Our data set differs from the classical one given

by the DM’s ex-ante preferences over menus of alternatives. There are two advantages to working

with our data set. First, for a DM, revealing ex-ante preferences over all menus of alternatives

is a cognitively demanding task. In contrast, revealing her ex-ante preferences over alternatives

(which can be identified with preferences over singleton menus) is a simpler and more natural task.

Second, menu preferences implicitly assume sophistication and derive the DM’s ex-post choices

from her ex-ante ranking of menus.6 Our data set allows us to remain agnostic about whether the

DM is sophisticated or naive about anticipating her ex-post choices and take ex-post choices as

given. This is useful in applications where the agents are often assumed to be naive about their

self-control problems (as we do in our monopolistic contracting example in Section 5).

We first provide two representation theorems in an environment with finitely many, riskless

alternatives (in contrast to lotteries over them.) Working in a riskless domain has two important

advantages. First, psychology experiments on willpower typically involve choices without risk.

Second, it enables us to identify the key behavioral postulates underpinning the limited willpower

model without additional structure.

In this simple domain, our first axiom is that the DM’s ex-ante preferences are complete and

4Similar examples of WARP violations feature in Fudenberg and Levine (2006); Dekel et al. (1998); Noor and
Takeoka (2010). In a menu preference framework, Dillenberger and Sadowski (2012) point out that when agents
anticipate experiencing guilt or shame when they deviate from a social norm, their choices can also violate WARP.

5Ahn and Sarver (2013) also utilized two kinds of behavioral data. As opposed to ours, to derive their result, they
utilize both the entire menu preferences and the random ex-post choice from menus.

6There is evidence of “hot-cold empathy gaps” where individuals are not able to appreciate the intensity of
temptation, or other visceral urges at an ex-ante state. Loewenstein and Schkade (1999) review several studies that
find people tend to underestimate the influence on their behavior of being in a hot state (such as hunger, drug craving,
curiosity, sexual arousal, etc.).
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transitive. The second axiom, Independence of Preferred Alternative (IPA), says that dropping

any alternative that is strictly preferred to the chosen one should not affect the actual choice.7 The

third axiom, Choice Betweenness, states that the choice from the union of two sets is “between”

the choices made separately from each set with respect to preference.8 Our first representation

theorem shows that these three axioms are necessary and sufficient for (%, c) to be represented

by a generalized limited willpower model in which the willpower stock depends on the chosen

alternative. To characterize the limited willpower model we need an additional axiom. This fourth

axiom, Consistency, formalizes the intuition that if y is more tempting than z and the DM prefers

x but cannot choose it against z, then the DM should not be able to choose x against y either.

Our second representation shows that these four axioms are necessary and sufficient for (%, c) to

be represented by a limited willpower model.

These four axioms are simple and intuitive, but the simplicity comes at a cost. The finite rep-

resentation is not unique even in an ordinal sense. This observation motivates us to consider an

environment where alternatives are lotteries over outcomes. To prove the representation theorem

in the lottery domain, we introduce several additional axioms to take advantage of the additional

structure provided by the lottery domain. In addition to some technical axioms we use two in-

dependence axioms imposed on the choice correspondence. These axioms are suitable relaxations

of the full independence axiom in our setting. Given that we are ultimately interested in conflict

between preferences and choices, we introduce an axiom, Conflict, to rule out cases where a conflict

between them never arises. In other words, Conflict requires that there are situations where the

DM prefers one lottery over another but when she has to make a choice between the two she chooses

the less preferred lottery. Finally, Limited Agreement axiom restricts the extent of the conflict that

occurs between preferences and choices. It says that when the two lotteries are very close, the DM’s

choices must agree with her preferences.

Issues of temptation and self-control have been studied using the preference over menus frame-

work pioneered by Kreps (1979).9 Under sophistication, DM’s preferences over menus have a

two-period interpretation and reveal her anticipated second period choices from the menu. In Gul

and Pesendorfer (2001)’s costly self-control model the implied second period choices satisfy WARP.

However, others have noted that under temptation intuitive choice patterns like the compromise

effect might be observed and these choices violate WARP. Working in the lottery domain, Noor

and Takeoka (2010) retain all the axioms of the costly self-control model except for independence.

7This axiom can be viewed as a relaxation of WARP that says that any unchosen alternative can be dropped
without affecting actual choices. In contrast, IPA allows only strictly preferred alternatives to be dropped without
affecting actual choices.

8Although at first glance this axiom seems like a translation of Gul and Pesendorfer’s Set Betweenness axiom to
our domain, the two axioms are independent. We discuss this point in Section 3.

9For a survey see Lipman and Pesendorfer (2011).

4



They show that the resulting menu dependent self-control model generates implicit second period

choices that violate WARP. In the limited willpower model, DM’s choices also generate these choice

patterns. However, the two approaches differ for two reasons. First, since our axiomatization relies

directly on the DM’s choices, and does not require the additional assumption of sophistication.

Second, we can go beyond the observation that choices violate WARP, and understand the testable

implications of different representations of ex-post choices. For example, the choices generated by

the menu dependent self-control and the limited willpower models both satisfy IPA and Choice

Betweenness. As a result, they are both special cases of the generalized limited willpower model.

However, the choices generated by the convex self-control model typically violate the Consistency

axiom, showing that the models are distinct. In Section 3 we expand on this point.

In Section 5, we present a simple example, based on a two-period model of monopolistic con-

tracting between a monopolist and a naive consumer who has self-control problems. Several papers

have studied contracts in this setting motivated by the fact that consumers sign up for phone

plans, gym-membership, or credit card plans that seem exploitative. Our example illustrates that

the willpower model delivers distinct predictions compared to these papers. Specifically, we show

that when the consumer has positive willpower the optimal contract consists of three alternatives

and the consumer’s choices reflect a form of the “compromise effect” which is induced endogenously

by the contract. The example has several interesting implications. Interestingly, the optimal con-

tract includes an alternative that neither the consumer nor the firm believes would be chosen from

an ex-ante perspective, and indeed is not chosen ex-post. Hence, the example suggests a new reason

for why contracts in the real-world may seem excessively complex.

In Section 6.1, we discuss the implication of our results for the interpretation of the large literature

on “willpower experiments” (for example Baumeister et al. (1994); Baumeister and Vohs (2003)).

These experiments have demonstrated that individuals depleted by prior acts of self-restraint tend

to behave later as if they have less self-control which is often viewed as prima facie evidence of

limited willpower. We argue that there is an alternative explanation where prior act of self restraint

alter subjects’ temptation rankings. We then derive conditions that would allow an experimenter

to eliminate this alternative explanation and conclude that the only impact of a prior act of self

restraint is on the willpower stock.

Finally, in Section 6.2 we discuss identification of the utility function u, temptation ranking v

and the willpower stock w. We show that, in the lottery domain, identification can be based on

the DM’s ex-post choices and ex-ante preferences can be constructed from ex-post choices (even

though the choices violate WARP). To the best of our knowledge the limited willpower model is

the first model that captures self-control problems entirely from ex-post choice data. We should
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highlight that the lottery domain is the key for this result.10

2 Model

Let X be a finite set of alternatives. The DM’s ex-ante preferences % are over Z. In the riskless

domain Z = X and in the lottery domain Z = ∆ where ∆ is the set of all simple lotteries over

X. These preferences can be interpreted as the DM’s commitment preferences. The DM’s ex-post

choices are captured by a choice correspondence c that assigns a non-empty subset of A to each

A ∈ X where X is the set of all non-empty subsets of Z.

We say that (%, c) has a generalized limited willpower representation if there exists (u, v, w) where

u : Z → R represents preference % and c is given by

c(A) = argmax
x∈A

u(x) subject to max
y∈A

v(y)− v(x) ≤ w(x)

where v : Z → R captures the temptation values and w : X → R+ is the willpower function. If

w is a constant function, we call it simply a limited willpower representation. Furthermore, in the

lottery domain, both u and v are linear.

In the standard model where there is no willpower problem, a DM chooses the alternative that

maximizes u from any menu. A DM who has limited willpower also maximizes u but faces a

constraint. The willpower requirement of alternative x is given by the difference between the

temptation value of the most tempting alternative on the menu, maxy∈A v(y), and the temptation

value of x. The DM can choose x only if its willpower requirement is less than the willpower stock,

w. Otherwise, the DM does not have enough willpower to choose this alternative. Notice that the

willpower requirement is menu dependent. This is because willpower depletion not only depends

on how tempting the chosen alternative is but also on the most tempting alternative on the menu.

As a simple example consider three alternatives: going to the gym (g), reading a book (g) or

watching TV (t). Suppose ex-ante g � b � t. Suppose v (g) = 0, v (b) = 2, v (t) = 4. Table 1

shows the DM’s choices from two sets, {g, b, t} and {g, b} for varying levels of willpower stock.11

When willpower stock is high, w = 5, the DM chooses according to her ex-ante preferences. When

willpower stock is low the DM also behaves like a standard preference maximizer, except that she

chooses the most tempting alternative. When the willpower stock is intermediate, w = 3, then the

10In the context of rational attention, Ellis (2013) made a similar point where ex-post choices rationalize rational
inattention. However, his choice data is richer that ours, namely the DMs choices from each feasible set of acts and
conditional on each state of the world.

11We will abuse the notation and write c(x, y, . . . ) instead of c({x, y, . . . }) and when the choice is unique, x =
c(x, y, . . . ). Similarly, we omit braces and write A ∪ x instead of A ∪ {x}.
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model has interesting implications – decisions can be driven by a compromise between the ex-ante

preference and temptation. To see this suppose all three alternatives are available. The DM is

not able to choose g since v (t) − v (g) = 4 > 3 = w. In this case she chooses the compromise

alternative b since v (t)− v (b) = 2 < 3. However when only g and b are available, there is no need

to compromise (since v (b)− v (g) = 2 < 3) and the DM chooses g.

w = 1 w = 3 w = 5

c(g, b, t) t b g
c(g, b) b g g

Table 1: Choices for different levels of the willpower stock

3 Riskless Domain

In this section we introduce the axioms and provide our first representation theorem in the riskless

domain with finitely many alternatives. Working in this domain, we are able to identify the key

axioms characterizing the limited willpower model with minimal structure. Our first axiom is

standard.

Axiom 1. % is complete and transitive.

For simplicity throughout this section we assume that for all x, y ∈ X, if x 6= y, either x � y

or y � x and use � notation instead of %. Since there are no indifferences, the choice must be

unique, |c(S)| = 1 for all S. We will relax this assumption when we move to the lottery domain.

The second axiom is Independence of (Unchoosable) Preferred Alternative (IPA); better options

that are not chosen can be removed without affecting the actual choice.

Axiom 2. (IPA) If x � y and y ∈ c(A ∪ x) then c(A) = c(A ∪ x).

This axiom can be viewed as a relaxation of WARP. Recall WARP allows any unchosen alternative

to be dropped without affecting actual choices. In contrast, IPA allows only preferred unchosen

alternatives to be dropped without affecting actual choices.

IPA is based on the intuitive notion that when a tempting alternative is also the most preferred

available alternative, it should be chosen. Hence any unchosen alternative that is strictly preferred

to the chosen one must have a relatively low temptation value. IPA says that dropping such

alternatives should not affect the actual choice. Let’s revisit the example in Section 2 with three

alternatives, g, b and t with g � b � t. Suppose reading a book is uniquely chosen when all three
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options are available, i.e. b = c(g, b, t). This means the most preferred alternative (g) is not chosen,

and hence, is not the most tempting alternative and is irrelevant in the sense that dropping it from

the menu should not affect the choice behavior of the DM. That is, we must have c(g, b, t) = c(b, t).

On the other hand, it is possible that removing t, the least preferred alternative, might influence

the choice. If b is not as tempting as t, the DM can choose the best alternative g when t is removed,

i.e. g = c(g, b) 6= c(g, b, t). Hence, WARP is not satisfied in the presence of limited willpower.

The next axiom is Choice Betweenness: the choice from the union of two sets is “between” the

choices made separately from each set with respect to preference.

Axiom 3. (CB) If c(A) % c(B) then c(A) % c(A ∪B) % c(B).

To understand this axiom take the union of two choice sets A∪B and w.l.o.g. suppose A contains

one of the chosen alternatives from A∪B. Consider two (not necessarily mutually exclusive) cases.

First, suppose A contains the most tempting item in A∪B. In this case, the DM should not be able

to choose a strictly better alternative from A (since she needs to overcome the same temptation

from A ∪ B as from A) but should still be able to choose the alternative originally chosen from

A ∪ B, i.e., c(A) ∼ c(A ∪ B).12 Note that in this case the axiom is automatically satisfied since

c(A ∪ B) must be in between c(A) and c(B) in terms of preference. As a second case suppose B

contains contains the most tempting item in A ∪B. In this case the DM should be able to choose

at least as preferred an alternative from A as she can from A ∪ B since she needs to overcome a

weaker temptation from A. Moreover, the alternative chosen from B cannot be strictly preferred

since the most tempting alternative is contained in B. Thus, the axiom should be satisfied in this

case as well.13

A closely related axiom is Gul and Pesendorfer’s Set Betweenness (SB). Although at first glance

CB seems like a translation of SB to our domain, the two axioms are independent. To make this

point precise, suppose �0 is a preference relation over non-empty subsets of X. We say �0 satisfies

SB if A �0 B implies A �0 A ∪ B �0 B. We let x � y iff {x} �0 {y}. We will now provide two

examples that show that SB and CB are indeed independent axioms.

In the first example, �0 satisfies SB, but (�, c) violates CB. For this example, we use the

costly self-control representation axiomatized by Noor and Takeoka (2010) in the menu preference

framework.14 We say that �0 has a costly self-control representation if it can be represented by

12Implicit in these arguments is that only the most tempting alternatives matter in influencing the DM’s choices.
Clearly, this is also the case in the representation since only the alternative with the highest v value matters in
determining which alternatives are choosable from a choice set.

13In fact, c(A ∪ B) can be strictly between c(A) and c(B). Continuing with our earlier example, let A = {g, b}
and B = {t}. Recall that both g and b are strictly better than t, so c(A) � c(B). The choice from all three options,
b, is strictly better than t, the worst alternative, so c(A ∪ B) � c(B). Moreover, from the set A, g is chosen, thus
c(A) � c(A ∪B) � c(B).

14Noor and Takeoka (2010)’s axiomatization is in the lottery domain. Here we adopt their representation to the

8



V : X → R given by

V (A) = max
x∈A

u(x)− ϕ(maxy∈Av(y)− v(x))

where u, v : X → R and ϕ : R → R. The DM’s choices, naturally implied by the model, are given

by

c(A) = argmax
x∈A

u(x)− ϕ(maxy∈Av(y)− v(x)).

It is easy to see that if �0 has a costly self-control representation then it satisfies SB. To see that

(�, c) can violate CB let X = {x, y, z}, ϕ(a) = a.5, u(x) = 2, u(y) = 1, u(z) = 0, and v(x) = 0,

v(y) = 1.5, v(y) = 3. In this case direct calculation shows that x = c(x, z) = c(x, y, z) � y =

c(x, y) � z = c(y, z). Hence, (�, c) does not satisfy CB since c(x, y, z) � c(x, y) � c(y, z).

In the second example, (�, c) satisfies CB but �0 violates SB. Suppose �0 is represented by a

function W : X → R defined as follows. If A has 2 or more elements:

W (A) = max
x∈A

u (x)−
(

max
y,z∈A,y 6=z

(v (y) + v (z))− v (x)

)
and for singleton sets W ({x}) = u (x) where u, v : X → R. The above model is a variation of Gul

and Pesendorfer (2001) where the self-control cost is linear but, differently from that model, here

the DM is tempted by not just the most tempting but also the second most tempting alternative

in the set. The DM’s choices are given by

c(A) = argmax
x∈A

u (x) + v (x) .

It is easy to see that (�, c) satisfies CB. To see that �0 violates SB, let X = {x, y, z}, u (x) = 7,

u (y) = 3, u (z) = 2, v (x) = 0, v (y) = 1 and v (z) = 2. Then, {x, y} �0 {x, z} �0 {x, y, z}.

Next, we present our first representation theorem in the riskless domain.

Theorem 1. (�, c) satisfies satisfies Axioms 1-3 if and only if it admits a generalized limited

willpower representation.

Obviously the generalized limited willpower representation contains limited willpower represen-

tation as a special case. Less obvious is that the generalized limited willpower representation is also

closely related to the costly self-control representation that we discussed earlier. If the cost func-

tion ϕ is linear, this is the model of Gul and Pesendorfer, which satisfies WARP. More interestingly

when the cost function is not linear, the model generates WARP violations. The previous litera-

ture focused especially on the cases where the cost function is either convex or concave. Theorem 1

sheds light on an important distinction between these cases. The convex cost function representa-

riskless environment.
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tion satisfies our Axioms 1-3, hence it is a special case of the generalized limited willpower model.

The concave cost function representation, on the other hand, is not a special case since, as shown

earlier, it violates CB. This shows that although the generalized limited willpower representations

is quite broad, it rules out some choice patterns. This discussion also highlights an advantage of our

domain in that it allows transparent comparisons of various models directly through their choice

implications.

Our next goal is to characterize the limited willpower model. To do this we need one more

assumption. Consider four alternatives x, y, z, t ∈ X. Suppose, y � c(y, z), that is the DM prefers

y to z but is unable to choose it. Intuitively this means that z is more tempting than y. If, in

addition, c(t, z) = t, then t must be more tempting than y as well, otherwise the DM would not be

able to choose t. If x � c(x, y), then the DM prefers x but cannot choose it against y because y is

too tempting. Since t is even more tempting than y, the DM should be unable to choose x against

t either. This intuitive conclusion would hold for the limited willpower model but it is not implied

by IPA and CB. This is our next axiom, Consistency.

Axiom 4. (Consistency) Let y � c(y, z) and c(t, z) = t. If x � c(x, y) then c(x, t) = t.

Now, we are ready to prove the main representation theorem in the riskless domain.

Theorem 2. (�, c) satisfies Axioms 1-4 if and only if it admits a limited willpower representation.

The costly self-control model with convex cost function violates the Consistency axiom.15 Hence,

Consistency provides a direct test to separate the limited willpower model from costly self-control

models. Moreover, the test is based only on ex-ante preferences and ex-post choices and does not

require information on menu preferences.

In the finite domain, limited willpower representation lacks uniqueness even in an ordinal sense.

To see this suppose X = {x, y, z} with x � y � z and the DM maker chooses the most preferred

alternative from any menu. This behavior is consistent with a limited willpower representation

where there is no self-control problem (e.g. v1 (x) > v1 (y) > v1 (z) and w1 = 0). It is also

consistent with a limited willpower representation where self-control problem exists but the DM

has enough willpower to overcome it (e.g. v2 (z) > v2 (y) > v2 (x) and w > v2 (z)− v2 (x) .) In the

next section, we move to the lottery domain where the additional structure allows us to prove a

representation theorem with stronger uniqueness properties.

15To see this consider the following example. Suppose ϕ(a) = a2, u(x) = 9, u(t) = 4.9, u(y) = .9, u(z) = 0, and
v(x) = 0, v(t) = 2, v(y) = 3, v(z) = 4. In this case direct calculation shows that x � y = c(x, y) � z = c(y, z),
c(t, z) = t and c(x, t) = x, hence Consistency is violated.
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4 Lottery Domain

4.1 Axioms

In the lottery domain, in addition to completeness and transitivity, we assume that % also satisfies

the standard independence axiom. Hence, we replace Axiom 1 with the following one.

Axiom 5. (EU) % admits an expected utility representation.

In the lottery domain, we maintain the two main behavioral axioms, IPA and CB and allow

indifferences. One of the implications of IPA is that the DM must be indifferent between all chosen

lotteries with respect to preferences. In other words, p, q ∈ c(A) implies p ∼ q. Given this fact,

we abuse the notation and write p % c(A) if p % q and q ∈ c(A). Similarly, we use c(A) % c(B) if

p % c(B) and p ∈ c(A).

We impose the next axiom to allow for indifferences in preferences, which is necessary in this

domain. This axiom relaxes the classical Independence of Irrelevant Alternatives (IIA) which

requires that if a lottery is chosen from a larger set and it is in a smaller subset, then it must also

be chosen from a smaller set. In the presence of willpower problems IIA may not necessarily hold

because the larger set might have alternatives that are more tempting then the ones in the smaller

one. Thus the DM might be able to choose better lotteries from the smaller set. However, if the

lotteries chosen from the smaller set are not better than the ones from the larger set, any lottery

that is chosen from the larger one must also be chosen from the smaller one. This is our next

axiom:

Axiom 6. If c(A) ∼ c(B) and p ∈ A ⊂ B then p ∈ c(B) implies p ∈ c(A).

To allow for multi-valued choice, we impose two additional axioms. The first one says that if a

lottery is chosen from two choice sets, it will be also chosen from their union. If the DM has enough

willpower to choose p from A and B, she can also choose p from A ∪ B. Indeed, if the choice is

single-valued, this axiom is implied by CB.

Axiom 7. If p ∈ c(A) ∩ c(B) then p ∈ c(A ∪B).

The second one says that, if there are at least two chosen lotteries, removing one of them will

lead to (weak) improvement. Assume both p and q are in c(A). This means that the DM has

enough willpower to choose p from A, hence from any subset of A including p. Removing q can

only relax the willpower constraint, which might lead to the choice of a better lottery. Again, if

the choice is single-valued, this axiom is trivially satisfied.

Axiom 8. If c(A) \ q 6= ∅ and q ∈ c(A) then c(A \ q) % c(A).
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The next two axioms impose independence conditions on the choice correspondence.16 We use

the notation pαq as a short hand for αp + (1 − α)q where α is a scalar. The standard (or full)

independence axiom adapted to choice correspondences would say that if a lottery is chosen over

another one, when both are mixed with a third alternative using the same mixture weight, the

mixture of the better lottery is still chosen, i.e., p ∈ c(p, q) implies pαr ∈ c(pαr, qαr) where

α ∈ [0, 1]. The following example illustrates that full independence is too strong for the limited

willpower model.

Example 1. Assume u(x) = 1 and u(y) = 0, v(x) = 0 and v(y) = 3, and w = 2. Because

v(y) − v(x) = 3 > 2 = w, the DM does not have enough willpower to choose x whenever y is

available. Hence the DM ends up choosing y from {x, y}, i.e. c(x, y) = y. Now replace x with

the half-half mixture x1
2y. Since v is linear, the temptation of the mixture is higher than the

temptation value of x. Indeed, since v(y) − v(x1
2y) = 1

2v(y) − 1
2v(x) = 1.5 < 2 = w, the DM has

enough willpower to overcome the temptation and chooses the mixture, c(x1
2y, y) = x1

2y. Hence full

independence is violated.

Full independence fails in the above example because when the tempting alternative y is present,

choosing the half and half mixture of the preferred alternative x and the tempting alternative y

requires less willpower than choosing x. Thus x is not choosable but x1
2y is choosable when y is

available.

Note that, in the example, x is better than y but it is not choosable over y. At the same

time y is (trivially) better than and choosable over itself. Thus x1
2y involves a mixture of two

alternatives that are both better than y but one is choosable and the other not choosable over y.

The example illustrates that in such cases independence might fail. Our next two axioms relax the

full independence axiom to take into account choosability of alternatives.

Consider two binary choice problems: c(p, q) and c(p′, q′) where p and p′ are better than q and

q′, respectively. Suppose the DM cannot choose the better options in either situation. We interpret

this to mean that she does not have enough willpower to choose the better alternative in either

case. Now consider a third choice problem c(pαp′, qαq′). Part ii of the next axiom requires that

the DM is unable to choose the mixture of the better alternatives in this new choice problem. In

other words, if both p and p′ are unchoosable over q and q′, respectively, then pαp′ is unchoosable

over qαq′. Part i of the axiom considers the opposite case when both p and p′ are choosable over q

and q′ respectively. In this case the axiom requires that pαp′ is choosable over qαq′. While the full

independence axiom might fail if we mix choosable and unchoosable alternatives, the model enjoys

independence if we account for choosability as given by our next axiom, Temptation Independence.

16In our setup choices are not necessarily captured by a single preference relation, therefore we need to impose
additional independence conditions directly on the choice correspondence.
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Axiom 9. (Temptation Independence) Suppose p � q. Then for all α ∈ (0, 1],

(i) If p = c(p, q), p′ ∈ c(p′, q′) and p′ % q′ then pαp′ = c(pαp′, qαq′),

(ii) If q = c(p, q), q′ = c(p′, q′) and p′ � q′ then qαq′ = c(pαp′, qαq′).

The next axiom, Invariance, relaxes the full independence axiom in a different way. A version of

full independence can be formulated as follows:

If c(pαr, qαr) = pαr then c(pα′r′, qα′r′) = pα′r′ for any r′ and α′.

When α′ is not equal to α, full independence might fail in our model. To see that we revisit

Example 1 and remember c(x1
2y, y) = x1

2y and c(x, y) = y. We could write these choices as

c(x1
2y, y

1
2y) = x1

2y and c(x1y, y1y) = y1y. Hence, different mixing ratios might affect choosability

and the choice. The invariance axiom relaxes full independence by comparing only cases where α′ =

α. Specifically, consider two cases. The DM chooses either from {pαr, qαr} or from {pαr′, qαr′}.
The axiom requires that as long as both lotteries p and q are are mixed with a third lottery using

the same weight α, neither the ranking nor the choosability of the mixtures will be affected. Thus

if the DM chooses pαr from {pαr, qαr} then she must choose pαr′ from {pαr′, qαr′}.

Axiom 10. (Invariance) If c(pαr, qαr) = pαr then c(pαr′, qαr′) = pαr′ for any r′.

We also make a standard continuity assumption for binary choice sets.

Axiom 11. (Continuity) Suppose pn → p and qn → q with pn % qn for all n. If pn ∈ c(pn, qn) then

p ∈ c(p, q).

As emphasized above, we are ultimately interested in conflict between preferences and choices.

Axiom 10, Conflict, rules out cases where a conflict between preferences and choices never arises.

In other words, Conflict requires that there are situations where the DM prefers one lottery over

another but when she has to make a choice between the two she chooses the less preferred lottery.

Axiom 12. (Conflict) There exist p and q such that p � q and c(p, q) = q.

Axiom 11, Limited Agreement, on the other hand, restricts how much conflict can occur between

preferences and choices. It says that when the two lotteries are very close, the DM’s choices must

be in agreement with her preferences.

Axiom 13. (Limited Agreement) For all p � q, there exists α > 0 such that pαq = c(pαq, q).

We now state our main theorem in the lottery domain.
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Theorem 3. (%, c) satisfies IPA (Axiom 2), CB (Axiom 3) and Axioms 5-13 if and only if it

admits a limited willpower representation.17

It is routine to verify the if part of the theorem. For the only if part, we first identify u by the help

of Axiom 5. We then define an auxiliary definition- just choosability. We say, given p � q, p is just

choosable over q if (i) p = c(p, pαq) if 0 < α < 1 but p 6= c(p, pαq) if α < 0 and (ii) pαq = c(pαq, q)

if 0 < α < 1 but pαq 6= c(pαq, q) if α > 1. We show that the just choosability relation is linear

on the line passing through p and q. We then show that there exist two neighborhoods of p and

q such that the linearity is still satisfied. We then utilize this finding to define v for all lotteries

and show that the representation holds for any binary set. The last step in the proof extends the

representation from binary sets to any finite set.

Since u represents %, which admits an expected utility representation, u is unique up to any

positive affine transformation. The next proposition states that the temptation ranking and the

willpower stock are unique up to a common positive linear transformation and an additive shift to

the former.

Theorem 4. If (u, v, w) and (u′, v′, w′) are limited willpower representations of (%, c) then there

exist scalars α > 0, α′ > 0, β, β′ such that u′ = αu+ β, v′ = α′v + β′ and w′ = α′w.

Conflict and Limited Agreement are crucial to provide the uniqueness result. When there is no

observable conflict between the DM’s preferences and choices, the temptation ranking v and the

willpower stock w are not pinned down. To see this, suppose the DM’s choice correspondence c

can be represented by her preferences %. We can then find a limited willpower representation of c

by setting v equal to u and choosing any non-negative amount of willpower. Conflict and Limited

Agreement eliminate these trivial cases.

5 Contracting with Consumers with Limited Willpower: An Ex-

ample

In this section we illustrate through a simple example that the willpower model delivers distinct

predictions in economic applications compared with other widely studied models of limited self-

control.18

We consider a two-period model of monopolistic contracting between a monopolist and a con-

sumer. Let’s denote the set of alternatives available to the monopolist by A. In the first period,

17Remember both u and v are linear in the lottery domain.
18In this example we compare the predictions of the Strotz model with the limited willpower model. However, very

similar comparisons would hold with respect to the costly self-control or hyperbolic discounting models.

14



the monopolist offers the consumer a contract that consists of a menu of alternatives C ⊆ A with

corresponding prices. The consumer can accept or reject the contract. If the consumer accepts the

contract, in the second period she chooses an alternative from the menu and pays its price to the

monopolist. If the consumer rejects the contract then she receives her outside option normalized

to zero. We assume that both parties are committed to the contract once accepted.19

We denote the price of alternative (or service s) by ps, the cost of providing it by c (s), its utility

to the consumer by u (s) , and its temptation value by v (s) . We call e (s) = v (s)−u (s) as the excess

temptation associated with alternative s. We assume that the consumer has limited willpower and

utility and temptation values are both quasilinear in prices.20 We denote U (s, ps) = u (s)− ps and

V (s, ps) = v (s)− ps.

The monopolist’s profit from selling alternative s is ps − c (s) .21 Following Eliaz and Spiegler

(2006) and Spiegler (2011) we assume that the consumer is naive in the sense that she believes she

has no self-control problem, i.e., she believes that she will choose from the menu alternative s that

maximizes U (s, ps).
22 In reality, the consumer’s second period choices are governed by the limited

willpower model, that is, she might be tempted by the other alternatives available in the contract

C. This means that from the menu the consumer chooses alternative s that maximizes U (s, ps)

subject to V (s′, ps′) − V (s, ps) ≤ w where w is the willpower stock and s′ is the alternative on

the menu that maximizes V. We assume that the monopolist knows that the consumer has limited

willpower and can predict perfectly the consumer’s second period choices.23

In our example we will assume that the monopolist has only four potentially available alternatives:

s1, s2, s3, s4. Here think of alternative s1 as the basic service level, and the others as upgrades. These

upgrades provide higher utility and temptation values but are also costlier to produce. For each

alternative the utility and temptation values and the production cost are given in the following

table:

19This framework fits into many real world situations. For example, when signing up for a phone plan, gym-
membership, or a credit card, purchasing a holiday package, or making a hotel reservation consumers often sign a
contract that specifies a basic level of consumption but can be “upgraded” at the time of consumption.

20Broadly speaking, the idea that temptation would decrease in price seems reasonable in many situations. When
the price of a good increases, the consumer must forego other potentially tempting goods. Moreover, when the price
is sufficiently high the good might become unaffordable. Quasilinearity of temptation values in prices is clearly a
partial equilibrium way of capturing the impact of prices on temptation and a restrictive assumption. Yet it provides
tractability and is implicitly invoked in the literature on changing tastes where it is usually assumed that both the
present and future utilities are quasilinear in prices.

21We assume that the production cost is incurred only for the service that the consumer chooses from the menu.
22Other important contributions to this literature include DellaVigna and Malmendier (2004); Heidhues and Koszegi

(2010).
23More precisely, we solve for the optimal contract for the monopolist given its beliefs about the consumer’s

behavior. To do this we do not need to know whether the monopolist (or the consumer) holds correct beliefs about
the consumer’s second period behavior.
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u v c

s1 4 6 1

s2 8 12 4

s3 12 18 9

s4 16 24 16

To begin suppose the consumer can commit to an alternative at the time of purchasing the con-

tract.24 Or equivalently, the monopolist can only offer a contract with one option or the consumer

is a standard utility maximizer with no willpower limitation. In any of these cases, the monopolist

would offer the consumer s2 (which is the option that maximizes u− c), and charge the consumer

p(s2) = u(s2) = 8, yielding a profit of 4 for the monopolist.

Next, consider the case where the consumer has zero willpower (i.e. has Strotz preferences).

In this case, the optimal contract involves two alternatives. One of the alternatives is used as

bait to attract the naive consumer, but the other one (which we call the indulging alternative) is

what the consumer actually chooses in the second period. To maximize its profit the monopolist

chooses s3 – the alternative that maximizes v − c – as the indulging alternative, and s1 – the

alternative with lowest overall excess temptation v − u – as bait.25 Since the price of the bait can

be at most its u-value, the monopolist sets p (s1) = 4. The consumer’s willpower constraint implies

that the price of the indulging alternative must be less than v (s3) − (v (s1)− u (s1)) = 16. Hence

with Strotz preferences, the optimal contract is {s1, s3} with prices p (s1) = 4 and p (s3) = 16 − ε
where ε is a slight discount that makes the willpower constraint strict. The monopolist’s profit is

p (s3)− c (s3) = 7− ε.

The case of w = 0 replicates Eliaz and Spiegler (2006)’s finding that the monopolist’s optimal

contract is an indulging contract for naive consumers with Strotz preferences. The novelty of our

example arises when w > 0. It turns out that, as long as the consumer’s willpower is not too high,

the monopolist can improve its profit by offering a compromising contract that consists of three

alternatives. We consider two cases w = 2 and w = 4. We refer to these as low and medium

willpower cases.

To begin consider the low willpower case with w = 2. Suppose the monopolist continues to offer

the alternatives {s1, s3}. Since the consumer can resist some temptation, it is easy to see that now

the monopolist needs to lower the price of s3 from 16 to 16−w = 14 reducing its profit to 5. Now,

consider the contract offering three service levels {s1, s3, s4} with prices p (s1) = 4, p (s3) = 16− ε
and p (s4) = 20 − ε where ε is arbitrarily small. Again, in period 1, the consumer believes that

24Of course, a naive consumer would not find such commitment necessary.
25The consumer is willing to pay at most pb = u (sb) for the ”bait” sb. The consumer’s willpower constraint implies

that v (s3) − p3 ≥ v (sb) − pb = v (sb) − u (sb) . Hence p3 ≤ v (s3) − (v (sb)− u (sb)) = e (sb) . This implies that the
monopolist would choose sb as the alternative with the lowest excess temptation e.
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she will choose the bait s1. In reality, since v (s1) − p (s1) = 2 < v (s4) − p (s4) − w = 2 + ε, the

consumer does not have enough willpower to choose s1 in period 2 when the tempting alternative s4

is available. Moreover, she prefers to choose s3 over s4 since u (s3)−p (s3) = −4+ε > u (s4)−p (s4) =

−5 + ε and, since v (s3)−p (s3) = 2 + ε = v (s4)−p (s4)−w = 2 + ε, she is able to do so. Note that

the monopolist does not intend to sell the tempting alternative since it is too costly to produce,

but by making it available the monopolist can make sure that the consumer is unable to choose s1

and ends up choosing s3 instead.

We highlight two key points about the low willpower case. First, note that the monopolist’s profit

is once again 7−ε – the profit level that it makes when the traveler has no willpower – but the menu

now must include a third tempting alternative. Second, in terms of utility value, temptation value

and the price, the chosen alternative is in the middle. Thus, the consumer’s choice exhibits the

compromise effect, and importantly the effect is induced endogenously by the monopolist’s choice

of contract.

Next, consider the medium willpower case, w = 4. Clearly, faced with the previous contract

the consumer would now be able to choose s1 – an undesirable outcome for the monopolist. One

solution would be to lower the prices of both s3 and s4 by 2. Since the reduction in the price of s4

compensates for the change in the willpower stock, the consumer cannot choose s1, and since prices

of s3 and s4 are reduced by the same amount, then she would choose her preferred alternative s3

over s4. However this new contract would lower the monopolist’s profit from 7− ε to 5− ε.

In fact, the monopolist can do better by replacing s3 with s2 in the contract. To see how this

contract works, let p (s1) = 4, p (s2) = 10−ε and p (s4) = 18−ε. Clearly, given the prices of s1 and s4,

the consumer cannot choose s1 in period 2. In addition, since u (s2)−p (s2) = −2+ε = u (s4)−p (s4) ,

she is indifferent between s2 and s4 and since v (s2)−p (s2) = 2 + ε = v (s4)−p (s4)−w, she is able

to choose s2 over s4. Thus under this contract the consumer would choose s2 and the monopolist’s

profit is 6− ε.

The medium willpower case allows us to make further observations. First, as the willpower

level increases, the monopolist switches from selling the indulging alternative s3 to selling the

commitment alternative s2. Rather surprisingly, even though it sells the same product, its profits

exceeds the profit level under commitment. This is because the consumer accepts the contract

under the naive belief that it will consume the frugal option s1 and does not believe that she would

pay the high price of s2. However, once she accepts the contract, she ends up consuming the rather

more indulgent alternative s2. Of course, as the consumer’s willpower increases the monopolist

would have to reduce the price of s2 and eventually offer only s2 at the commitment price.

It is also interesting that when consumers have limited willpower the optimal menu contains

products that neither the consumer nor the monopolist believe would be consumed. The consumer

17



naively views some of the alternatives as irrelevant, whereas the monopolist views them as tempting

options that makes the frugal choices unpalatable to the consumer.

In summary we make the following observations from this example. When the consumer is a

standard utility maximizer the monopolist needs to offer only one alternative to maximize its profit.

When the consumer has Strotz preferences (i.e. zero willpower), the optimal contract consists of

two alternatives. However, as soon as the consumer has positive willpower, the optimal contract

consists of three alternatives and the consumer’s choices reflect a form of the “compromise effect”

which is induced endogenously through the monopolist’s choice of contract. Moreover, both the

design of the menu itself and the product that is actually consumed depend subtly on the consumer’s

willpower stock.

These results are in fact quite robust but a complete discussion of contracting with naive con-

sumers with limited willpower is beyond the scope of this paper. We refer interested readers to our

companion paper (Masatlioglu et al. (2014)).

6 Discussion

6.1 Defining “More Willpower” and Psychology Experiments

Psychologists (Baumeister and Vohs (2003); Faber and Vohs (2004); Muraven et al. (2006)) have

run experiments aiming to demonstrate that individuals who perform prior acts of self-restraint

tend to behave later as if they have less self-control. The typical experiment has two phases.

Every subject participates in the second phase but only a randomly chosen subset participates in

the first, with the remainder serving as a control group. In the first phase, subjects are asked to

perform a task that requires self restraint; in the second phase, a single choice from a feasible set

of alternatives is observed. The choice in the second phase requires self control. For example, the

subject decides for how long to squeeze a hand grip where choosing to squeeze longer requires more

self-control. Subjects who participate in the first phase seem to give into temptation in the second

phase. Experimental psychologists view these experiments as an apparent demonstration of limited

willpower.

We interpret these experiments in the context of our model as follows. We assume that the

subject’s preference relation does not depend on whether she is in the control or treatment group.

However, being in the control or treatment group might affect the subject’s choices. We denote

subject’s choices in the control and treatments groups as ccont and ctreat respectively. In the

experiment, while the subject in the treatment group gives in to temptation, the subject in the

control group does not, in the sense that, ccont(x, y) = x � ctreat(x, y) = y. It is apparent that these
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choices can be represented with a common (u, v) and different willpower stocks, wcont > wtreat.

We would like to extend this intuition to cases where we observe multiple choices. Assume the

subject in the treatment group gives in to temptation more often than the subject in the control

group, in the sense that, ccont(A) % ctreat(A) for all A and the relation is strict for some A. We first

illustrate that, in our model, giving in to temptation when in the treatment group is not sufficient

to conclude that the subject’s willpower stock is depleted when we observe multiple choices. To

see this consider the following example. The subject’s preferences are x � y � z. The choices in

the control group is ccont(x, y) = ccont(x, z) = ccont(x, y, z) = x and ccont(y, z) = z. Notice that

the subject gives in to temptation only when she faces {y, z}. The choices in the treatment group

is ctreat(x, z) = ctreat(y, z) = ctreat(x, y, z) = z and ctreat(x, y) = y. In the treatment group, she

always gives in to temptation. Hence the subject in the treatment group gives into temptation

more often than the subject in the control group. However, these choices cannot be represented

with a common (u, v) and different willpower stocks. To see this suppose there was a common (u, v)

and the willpower levels are such that wcont > wtreat. Since ccont(x, z) = x and ccont(y, z) = z, we

should have v(z) − v(y) > wcont and v(z) − v(x) < wcont implying v(y) < v(x). Since x is more

tempting than y, independent of the willpower stock, x will be always chosen when the feasible set

is {x, y}. This contradicts the fact that ctreat(x, y) = y.

The previous example illustrates that to identify when a subject in the treatment group has less

willpower we need to make sure that the subject’s temptation ranking v is the same whether she

is in the control group or the treatment group. To see how we do this, suppose p � q, q′ and the

control subject chooses p from {p, q} and q′ from {p, q′} . Suppose the treatment subject who has

less willpower is unable to choose p in either case. Now consider the mixtures pβq and pβq′. As β

increases from zero, both of these mixtures become less tempting. If the control and the treatment

subjects have the same v, then the former mixture is less tempting than the latter. Therefore, for

small β the treatment subject chooses both mixtures over p, for large enough β she chooses p over

both mixtures and for some intermediate range chooses p over pβq and pβq′ over p, but never the

reverse. The second part of the following definition formalizes this intuition.

Definition 1. Let % be the subject’s preference over ∆. Then, the subject in the control group has

more willpower than the subject in the treatment group if and only if

(i) ccont(A) % ctreat(A) for all A,

(ii) Suppose p � q, q′, ccont(p, q) = p and ccont(p, q
′) = q′. If ctreat(p, pβq) = pβq then ctreat(p, pβq

′) =

pβq′ where β ∈ (0, 1].

If the subject’s temptation ranking is the same whether she is in the control group or the treat-

ment group and gives into temptation more often in the treatment group, she must have less
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willpower when she is in the treatment group compared to when she is in the control group. The

next theorem shows that this is indeed the case.

Theorem 5. Let the behaviors of a subject both in the control and treatment group be represented by

a limited willpower model. Then the subject in the control group has more willpower than the subject

in the treatment group (according to Definition 1) if and only if their behavior can be represented

with a common u and v where wcont ≥ wtreat.

Clearly, experiments that are designed to identify willpower as a cognitive resource need to control

for variations in utilities of various alternatives. Our results says that controlling for preferences

over alternatives is not sufficient and – even for within subject designs – the experimenter needs to

control for variations in relative temptation values. Definition 1 tells us that at least in principle

this can be done, but such experiments would require observation of more complex choices.

6.2 Relationship between Ex-ante Preferences and Ex-post Choices

Suppose an outside observer knows that the DM’s ex-ante preferences and ex-post choices conform

to the limited willpower model and wants to identify the utility function u, temptation ranking v

and the willpower stock w. How much information does the observer need for this identification?

In this section, we show that, in the lottery domain, the observer only needs the DM’s ex-post

choices and can construct her ex-ante preferences from ex-post choices (even though the choices

violate WARP).

More formally, suppose (%, c) admits a limited willpower representation and suppose that we

observe choices c, but do not know anything about % directly. That is, (%, c) is such that for some

(u, v, w) with w > 0

c(A) = argmax
x∈A

u(x) subject to v(x) ≥ max
y∈A

v(y)− w

where u, v : ∆→ R are linear and u represents %. We wonder whether one can identify % (i.e., u)

from c.

In the standard approach, preferences are revealed by choices in a straightforward way. We say x

is revealed to be at least as good as y iff x ∈ c(x, y). For choices that satisfy the limited willpower

model this is no longer true. The difficulty in the identification is that even when u(x) > u(y), y

will be uniquely chosen from {x, y} if v(y)− v(x) > w.

Despite this difficulty it is possible to uniquely identify % from choices. Suppose the DM prefers

x over y. Either the DM has enough willpower to choose x or not. If it is the former, any mixture
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xαy is also chosen over y. If it is the latter, the DM will have enough willpower to choose a mixture

xαy for small enough α, and hence there must exist xαy that is uniquely chosen over y. Motivated

by this, given choice correspondence c, we define a revealed preference relation �c as follows.

Definition 2. We say x �c y if one of the following is true

(i) x = c(x, y) and there exists no α ∈ (0, 1) such that y ∈ c(xαy, y)26,

(ii) y = c(x, y) and there exists some α ∈ (0, 1) such that xαy = c(xαy, y).

As usual we say x %c y iff y �c x. The next theorem shows that %c is indeed the unique preference

relation consistent with choices c if (%, c) has a limited willpower representation.

Theorem 6. Suppose (%, c) satisfies Axioms 1-11. Then % and %c are the same.

In fact, using Theorem 6 we can conduct our analysis based only on c, even when we do not

observe % directly.27 To do this, we first construct the preference relation %c from c. We can

then check whether (%c, c) satisfies the axioms in Theorem 3. If the answer is yes, we can derive

the limited willpower representation of c. If the answer is no, then c does not have a willpower

representation since %c is the only possible candidate by Theorem 6.

In principle, checking whether x �c y for arbitrary x, y ∈ ∆ can be difficult. If x = c(x, y) we

need to be sure there exists no α ∈ (0, 1) such that y ∈ c(xαy, y). If y = c(x, y) we need to see if

there exists some α ∈ (0, 1) such that xαy = c(xαy, y). In general this requires checking whether in

the former case y ∈ c(xαy, y) or in the latter case xαy ∈ c(xαy, y) for arbitrarily small α. However,

it turns out that it is sufficient to check these for a fixed α̂ independent of x and y. To see this,

let yv ∈ arg maxy∈X v (y) and yu ∈ arg miny∈X v (x) . For given w > 0, let ᾱ (v (yv)− v (yu)) = w.

Clearly, if u (x) ≥ u (y) then xαy ∈ c(xαy, y) for any α < ᾱ.

7 Conclusion

Starting from Kreps (1979), researchers have been studying a two-period choice model, in which

a DM picks a menu among several menus in the planning period (menu preferences) under the

assumption that she is going to make a choice from each menu in the consumption period. This

new and rich data set allows researchers to study phenomena like temptation and self-control. Menu

26This is equivalent to saying that for all α ∈ (0, 1) such that xαy = c(xαy, y).
27A similar identification does not apply to the convex self-control model of Noor and Takeoka (2010). Consider

the following (non-degenerate) example. Suppose u(x) = 1, u(y) = 0, v(x) = 0, v(y) = 1 and ϕ(a) = a2 + a. In
this case, the DM always chooses the lottery with more weight on y and it is not possible to distinguish between the
preference and the temptation.
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preferences are not only useful but also necessary to study self-control within Gul and Pesendorfer’s

model because consumption choices alone cannot reveal whether the DM has a self-control problem.

However, the reliability of menu preferences depends on the ability of decision maker to predict her

own future behavior (i.e. sophistication).

In this paper, to derive the limited willpower representation, we use a novel data set: ex-ante

preferences and ex-post choices. Revealing the ex-ante preferences over alternatives is a simpler

and more natural task than revealing ex-ante preferences over all menus of alternatives. More

importantly, our data set allows us to remain agnostic about whether the DM is sophisticated or

naive about anticipating her ex-post choices. To derive the representation, we introduce a new

axiom called Choice Betweenness. We show that this axiom is independent of the Set Betweenness

axiom that is commonly invoked in the menu preferences domain. In other words, the two axioms

do not imply each other. We also show that in the lottery domain we can work with an even simpler

data set since ex-ante preferences can be derived from ex-post choices. This is a surprising finding

since self-control can be revealed from ex-post choice data alone (as opposed to menu preferences).

Finally we would like to highlight an important avenue for exploration in future work which

is the implications of limited willpower in a dynamic setting with multiple tasks. In the current

manuscript, we consider a model where willpower is needed in a single choice task. In fact, people

often use willpower in multiple tasks, and using more willpower in one task might mean less

willpower is left for another. Moreover, the model is static. In reality, there are dynamic effects

in the sense that the amount of willpower used in one period can affect the willpower stock in the

next period. For example, people reward themselves with a drink after a difficult day or week at

work. and the willpower stock in one period does not carry over to the next period. Incorporating

these considerations in an axiomatic framework can lead to new insights about behavior and a rich

set of testable implications.
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A Proofs

Proofs of Theorem 1 and 2

Before we provide the proofs of Theorem 1 and 2, we provide a brief sketch. To prove Theorem 1,
we first define a binary relation B′. We say that x B′ y if y � x = c(xy). In words, x blocks y if
x is worse than y but DM cannot choose y when x is available. Next, we define a second binary
relation B′′. We say that x B′′ y if x % y and there exist a and b such that a B′ y, x B′ b, and
a 7′ b. We say that x B y if x B′ y or x B′′ y. Next we show that B is an interval order, i.e. it is
irreflexive and x B b or a B y holds whenever x B y and a B b. The binary relation B is an interval
order if and only if there exist functions v and w such that

ΓB(S) = {x ∈ S : max v(y)− v(x) ≤ w(x)}.

Finally, to complete the proof of the first step, we show that S is indifferent to the %-best element
in ΓB(S).

In the proof of Theorem 2 we use consistency to show that we can construct a semi order B (i.e.,
B is an interval order and if xByBz then xBt or tBz for any t) by properly modifying B such that
S is indifferent to the %-best element in ΓB(S). To complete the proof we note that the binary
relation B is a semi order if and only if there exist a function v and a scalar w such that

ΓB(S) = {x ∈ S : max v(y)− v(x) ≤ w}.

Proof of Theorem 1

We first show that Axiom 1-3 imply an important implication of our model.

Claim 1. Suppose (�, c) satisfies Axiom 1-3. Then, If x � c(A ∪ x) then c(B) = c(B ∪ x) for all
B ⊃ A.

Proof. Let L(n) stand for the statement of Claim 1 that is restricted to when |B −A| ≤ n. Notice
that Axiom 2 is L(0). First, we shall show L(1). That is, x � c(A ∪ x) (so c(A) = c(A ∪ x) by
Axiom 2) implies c(A ∪ y) = c(A ∪ x ∪ y) for any y.

Case 1: y � c(A ∪ x ∪ y): By Axiom 2, c(A ∪ x) = c(A ∪ x ∪ y). By the assumption, we have
x � c(A ∪ x) = c(A ∪ x ∪ y). By applying Axiom 2, we get c(A ∪ y) = c(A ∪ x ∪ y).

Case 2: y ≺ c(A ∪ x ∪ y): By Axiom 3, y ≺ c(A ∪ x ∪ y) - c(A ∪ x) ≺ x. By Axiom 1 we get
c(A ∪ x ∪ y) ≺ x. Then by Axiom 2, we get the desired result, c(A ∪ y) = c(A ∪ x ∪ y).

Case 3: y ∼ c(A ∪ x ∪ y): We have three sub-cases:

• If y = c(A ∪ y), then c(A ∪ y) = c(A ∪ x ∪ y).

• If y � c(A ∪ y), then Axiom 2 implies c(A ∪ y) = c(A)(= c(A ∪ x)). Applying Axiom 3, we
get c(A ∪ x ∪ y) = c(A ∪ y), which is a contradiction because c(A ∪ x ∪ y) = y � c(A ∪ y).

• If y ≺ c(A∪ y), then Axiom 3 implies (c(A∪ x) =)c(A) % c(A∪ y). Applying Axiom 3 again,
it must be c(A ∪ x ∪ y) % c(A ∪ y) � y, which is a contradiction because c(A ∪ x ∪ y) = y.
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Now suppose that L(k) is true up when 1 ≤ k ≤ n−1. We shall prove L(n). Assume x � c(A∪x)
and let B = A ∪ {y1, y2, . . . , yn} where all of yi’s are distinct and excluded from A. Our goal is to
show c(B) = c(B ∪ x). Without loss of generality, assume y1 � y2 � · · · � yn.

Case 1: y � c(A∪x∪y) for some y ∈ {y1, y2, . . . , yn}: Since (B\y)∪x ⊃ A∪x and the difference
of their cardinality is n−1, we can utilize L(n−1). Then we get c((B \y)∪x) = c((B \y)∪x∪y)(=
c(B ∪ x)). Applying L(1) to x � A ∪ x, we have (y �)c(A ∪ x ∪ y) = c(A ∪ y). Applying L(n− 1)
to this yields c(B \ y) = c((B \ y) ∪ y) = c(B). Notice that c(B \ y) = c((B \ y) ∪ x) because
x � c(A ∪ x) and L(n− 1). These three equalities imply c(B) = c(B ∪ x).

Case 2: y ≺ c(A∪x∪y) for some y ∈ {y1, y2, . . . , yn}: By Axiom 3 we have c(A∪x) % c(A∪x∪
y) � y. Since x � c(A ∪ x) and Axiom 1, we have x � c(A ∪ x ∪ y). Because |B \ (A ∪ y)| = n− 1,
by applying L(n− 1) we have c(B) = c(B ∪ x).

Case 3: yi = c(A ∪ yi ∪ x) for all i = 1, . . . , n: In this case, we have

y1 = c(A ∪ y1 ∪ x) � y2 = c(A ∪ y2 ∪ x) � · · · � yn = c(A ∪ yn ∪ x)

Since c(A ∪ yi ∪ x) = c(A ∪ yi) by L(1), the above relations still hold when x is removed:

y1 = c(A ∪ y1) � y2 = c(A ∪ y2) � · · · � yn = c(A ∪ yn)

Recursively applying Axiom 3 implies

(c(A ∪ y1 ∪ x) =)y1 % c(A ∪ {y1, y2, . . . , yn})(= c(B)) % yn(= c(A ∪ yn ∪ x))

In other words,
c(A ∪ y1 ∪ x) % c(B) % c(A ∪ yn ∪ x)

Since (A∪y1∪x)∪B = B∪x, Axiom 3 implies c(B∪x) % c(B). Similarly, since (A∪yn∪x)∪B =
B ∪ x, Axiom 3 implies c(B) % c(B ∪ x). Therefore, by Axiom 1, c(B) = c(B ∪ x).

For any binary relation R, let ΓR(S) be the set of R-undominated elements in S, that is,

ΓR(S) = {x ∈ S : there exists no y ∈ S such that yRx}

Instead of constructing v and w, we shall construct a binary relation over X, denoted by B such
that c(S) is the �-best element in ΓB(S).28 It is known (Fishburn (1979)) that, if (and only if) B
is an interval order29, there exist functions v and ε such that

ΓB(S) = {x ∈ S : v(y)− v(x) ≤ w(x)∀y ∈ S} = {x ∈ S : max
y∈S

v(y)− v(x) ≤ w(x)}

so that we can get the desired representation.

Now, for any x 6= y, we define x B y when either x B′ y or x B′′ y where B′ and B′′ are defined
as follow:

1. x B′ y if y � x = c(xy)

28In our framework, the �-best element is equal to the %-best element.
29B is called an interval order if it is irreflexive and x B b or a B y holds whenever x B y and a B b.
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2. x B′′ y if x � y and there exist a and b such that a B′ y, x B′ b, and a 7′ b.

x

b

a

y

x

y

a s

t b

x s

t y

a

b

Figure 1: Case 3.

1

Figure 1: Black and Red arrows represent B′ and B′′, respectively. Solid and dashed arrows indicate
the existence and non-existence of relations, respectively.

Note that x B′ y and x B′′ y cannot happen at the same time. In addition, B′ and B′′ are both
irreflexive.

We need to show that (i) B is an interval order and (ii) the �-best element in ΓB(S) is equal to
c(S).

Claim 2. B′ is asymmetric and transitive.

Proof. By construction, x B′ y and y B′ x cannot happen at the same time. Suppose x B′ y and
y B′ z, i.e., z � c(yz) = y � c(xy) = x. Then by Claim 1, c(xyz) = c(xz) because y � c(xy).
By Axiom 3, (z �)c(yz) % c(xyz) % c(xy). Hence, we have z � c(xyz) = c(xz). Hence we have
z � x = c(xz), so x B′ z.

Claim 3. If x B′ y and a B′ b but neither x B′ b or a B′ y, then it must be x B′′ b or a B′′ y but
not both.

Proof. First we shall show that x B′′ b and a B′′ y cannot happen at the same time. Suppose it
does. Then by definition of B′ and B′′, we have y � x � b � a � y. Axiom 1 is violated.

Now, we shall show that either x B′′ b or a B′′ y must be defined. Suppose not. Then, along
with the definition of B′, we have b � x = c(xy), and y � a = c(ab). Therefore, c(xyab) must be
weakly worse than x or a because it must be weakly worse than c(xy) or c(ab) by Axiom 3.

Since neither (x, b) nor (a, y) belongs to B′ or B′′, we have c(xb) = b � x, and c(ay) = y � a.
By Axiom 3, c(xyab) must be weakly better than c(xb) or c(ay) so it must be weakly better than
y or b.

Hence, either x or a must be weakly better than either y or b. Since we have already seen b � x
and y � a, the only possibilities are a % b or x % y, neither of which is possible because a B′ b and
x B′ y.

Claim 4. B is an interval order.

Proof. We need to show that B is irreflexive. By definition, we cannot have (i) x B′ y and y B′ x,
(ii) x B′ y and y B′′ x, or (iii) x B′′ y and y B′′ x. Hence B is irreflexive.

Next we show that x B b or a B y holds whenever x B y and a B b. We shall prove this case by
case:

Case 1: x B′ y and a B′ b: If we have x B′ b or a B′ y, then we are done. Assume not, then
Claim 3 implies we must have x B′′ b or a B′′ y (not both). Then x B b or a B y.
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Case 2: x B′ y and a B′′ b: In this case, by definition of B′′ and Claim 3, there exist s and t
such that a B′ t and s B′ b but not s B t. Focus on x B′ y and a B′ t, we must have either a B y
(it is done in this case) or x B t (so eihter x B′ t or x B′′ t). If x B′ t, then by looking at x B′ t and
s B′ b Claim requires x B b because it is not s B t. Thus, we consider the final sub-case: x B′′ t.
If so, we have x B′ y and s B′ b so it must be either x B b (then done) or s B y. If s B y, then it
must be s B′ y (i.e. not s B′′ y) because y � x % t � a % b � s. Therefore, we have s B′ y and
a B′ t with not s B t. Hence it must be a B y.
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Figure 1: Case 3.

1

(b) Case 3

Figure 2: The Proof of Claim 4

Case 3: x B′′ y and a B′′ b: By definition of B′′, there exist s and t such that x B′ t and s B′ y
with not s B t. Then by focusing on x B′ t and a B′′ b, we must have either x B b (done) or a B t.
Suppose the latter. Then we have s B′ y and “a B′ t or a B′′ t,” so the previous two cases are
applicable so we conclude a B y because it is not s B t.

Claim 5. c(S) is equal to the �-best element in ΓB′(S).

Proof. First, we prove that ΓB′(S) does not include any element that is strictly better than c(S).
Suppose x ∈ ΓB′(S). Let S′ and S′′ be the subsets of S \ x consisting of elements that are better
than x and strictly worse than x, respectively. That is,

S′ := {y ∈ S : y � x} and S′′ := {y ∈ S : x � y}.

Then, we have c(S′ ∪ x) � x by definition of c and x = c(xy) � y for all y ∈ S′′ by the definition
of B′. Then by applying Axiom 3 we get c(S′′ ∪ x) = x. Thus, c(S′ ∪ x) � c(S′′ ∪ x) implies
c((S′ ∪ x) ∪ (S′′ ∪ x)) = c(S) % x again by Axiom 3.

Next, we shall show that c(S) ∈ ΓB′(S). Suppose not. Then, there exists y ∈ ΓB′(S) such that
y B′ c(S) by Claim 2 (especially B′ is transitive). That is c(S) � c({c(S), y}) = y. Thus, by Claim
1, we have c(S \ c(S)) = c((S \ c(S)) ∪ c(S)) = c(S), a contradiction.

Combining the first and second results, the �-best element in ΓB′(S) is equal to c(S).

Claim 6. c(S) is equal to the �-best element in ΓB(S).

Proof. Since B⊇B′ by construction, we have ΓB(S) ⊆ ΓB′(S). Therefore, by Claim 5, it is enough
to show is that the �-best elements in ΓB′(S) (which is c(S)) is included in ΓB(S). Suppose
c(S) /∈ ΓB(S). Since B is an interval order, it is automatically transitive. Therefore, there exists
y ∈ ΓB(S) such that y B c(S) but not y B′ c(S). Therefore, it must be y B′′ x so y � c(S). Since
y ∈ ΓB′(S), y cannot be strictly better than c(S) (see the proof of Claim 5).
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(The Representation ⇒ The Axioms)

Showing that the first axiom is necessary is straightforward. For the second axiom, if x � c(A∪x)
then A must have an element y with v (y) > v (x) + w (x), so its superset B also includes y so
Γ (A) = Γ (B), so c (A) = c (B).

The third axiom: Let x∗ be the u-best element in Γ (A ∪B). Then it must be in Γ (A) or Γ (B)
as well so it is not possible that A ∪ B is strictly preferred to both A and B. Now we show that
the union cannot be strictly worse than both. Let xA and xB be the u-best elements in A and B,
respectively, and take vA and vB be the maximum values of v in A and in B, respectively. Then
we have

vA ≤ u (xA) + ε (xA) and vB ≤ u (xB) + ε (xB)

Therefore the maximum value of v in A ∪B is the higher one between vA and vB, either xA or xB
must be in Γ (A ∪B) so c(A ∪B) must be weakly better than either c(A) or c(B).

Proof of Theorem 2

We are now done proving the sufficiency of the axioms for the representation in Theorem 1. Next,
we show the sufficiency of Axioms 1-4 for the representation in Theorem 2.

Claim 7. If x � c(xy) � c(yz) then, for all t, c(xyzt) is either c(xt) or c(yz).

Proof. Assume x � c(xy) � c(yz), then it must be x � y � z. Consider c(zt). If c(zt) = t then by
Axiom 4 we get c(xt) = t. Since y � c(yz), by Claim 1, we have c(zt) = c(yzt). By Axiom 3 we
have c(xt) = c(xyzt) = c(yzt). Hence c(xyzt) = c(xt).

Now assume c(zt) = z. Since x � c(xy), by Claim 1, we have (z =)c(yz) = c(xyz). By Axiom 3,
we have c(zt) = c(xyzt) = c(xyz)(= c(yz)). Hence c(xyzt) = c(yz).

Again as in the proof of Theorem 1, instead of defining v(.) and w > 0, we shall construct a
binary relation over X, denoted by B such that c(S) is equal to the �-best element in ΓB(S) (i.e.
the set of B-undominated elements in S). It is known (Fishburn (1979)) that if (and only if) B
is a semi order30, which is a special type of an interval order, there exist function v and positive
number w such that

ΓB(S) = {x ∈ S : max
y∈S

v(y)− v(x) ≤ w}

so we get the desired representation.

Next we define the (i, j)-representation for an arbitrary interval order P .

Claim 8. Any interval order, P , has an (i, j)-representation (see Figure 3) if there exist two
functions i : X → N and j : X → N such that

i) For all x ∈ X, i (x) ≥ j (x),

ii) The ranges of i and j have no gap: That is if there exist x and y such that i (x) > i (y) then
for any integer n between i (x) and i (y) there is z with i (z) = n. Similarly for j(·),

30B is a semi order if it is an interval order and if xByBz then xBt or tBz for any t.
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iii) xPy if and only if i (x) < j (y).

Proof. The following proof is based on Mirkin (1979). Given an interval order, P , (xPy and zPw
imply xPw or zPy) we can show that, for all x and y in X, L(x) ⊆ L(y) or L(y) ⊆ L(x), and,
U(x) ⊆ U(y) or U(y) ⊆ U(x), where L(x) and U(x) are lower and upper contour sets of x with
respect to P, respectively. That is, L(x) = {y ∈ X| xPy} and U(x) = {y ∈ X| yPx}. Irreflexivity
indicates that there is a chain with respect to lower contour sets (this is also true for upper contour
sets), i.e., relabel elements of X, |X| = n such that L(xj) ⊆ L(xi) for all 1 ≤ i ≤ j ≤ n. Moreover,
we can strict inclusions such as there exists s ≤ n such that ∅ = L(xs) ⊂ L(xs−1) . . . L(x2) ⊂ L(x1)
where {x1, x2, . . . , xs} ⊆ X. For all k ≤ s, Define

Ik = {x ∈ X | L(xk) = L(x)}

Ik is not empty for any k since xk ∈ Ik by construction. Clearly, the system {Ik}s1 is a partition of

the set X, i.e.
s
∪
k=1

Ik = X, Ik ∩ Il = ∅ when k 6= l. Define

i(x) := k if L(x) = L(xk) for some xk in X.

Now construct another family of non-empty sets {Jm}s1, as follows

Js = L(xs−1) \ L(xs), · · · , J2 = L(x1) \ L(x2), J1 = X\L(x1)

Clearly, the system {Jm}s1 is another partition of the set X. Most importantly, we have ∅ = U(y1) ⊂
U(y2) . . . U(ys−1) ⊂ U(ys) where yi ∈ Ji for all i ≤ s. Define

j(x) := k if x ∈ Jk.

i 

1 

2 

3 x 
. 

. y 

. 

s-1 z 
s 

1 2 3 . . . s-1 s 

j 

Figure 3: The graph of the (i, j)-representation. Condition ii) implies every row and column (not
every cell) includes at least one alternative. Condition iii) implies (x, y) ∈ P but (x, z) /∈ P .

To see Condition i) holds, let i(x) = i. That means x ∈ Ii. If there exists no element z such that
zPx, i.e. U(x) = ∅, then j(x) = 1 ≤ i(x). Otherwise find the largest integer j such that x ∈ L(xj).
Note that j must be strictly less than i. Then by definition, j(x) = j+1, which is less than i = i(x).
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Since both {Ik}s1 and {Jk}s1 are partitions of X, there is no gap (Condition ii)). Finally, we have
Condition iii) since xPy ⇔ y ∈ L(x)⇔ j(y) ≥ i(x) + 1 > i(x).

Let B be the interval order that is defined in the proof of Theorem 1. By Claim 8, it has an (i, j)-
representation. We now modify the (i, j)-representation of B so that the resulting binary relation
is a semiorder, say B, such that c(S) is equal to the �-best element in ΓB(S). In other words, we
construct a semiorder based on the interval order we created without affecting the representation.
To do this, we prove several claims relating the (i, j)-representation with the preference �.

Claim 9. If i(x) = j(y)− 1, it must be y � x.

Proof. Since i(x) < j(y) we know that x B y. If x B′ y then we are done since in that case
y � x = c(xy). So suppose that x B′′ y. Then by definition of B′′, there exist α and β such that
α B′ y and x B′ β and α 7′ β. Moreover, by Claim 3 α 7′′ β. So α 7 β. Since α B y and x B β,
i(α) < j(y) and i(x) < j(β). Since α 7 β, i(α) ≥ j(β). Therefore it must be i(x) ≤ j(y) − 2, a
contradiction.

Definition 3. (i, j) is called a prohibited cell if there exists z such that i(z) < i and j(z) > j.
Otherwise, it is called a safe cell (see Figure 4a).

To obtain a semi-order representation, we need to move each alternative that is in a prohibited
cell to a safe cell and still the representation holds. The next definition describes a way in which
alternatives can be moved.
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(a) Prohibited cells because of z
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. 
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. x 
s-1 

s 

1 2 3 . . . s-1 s 
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(b) Movable cells for x

Figure 4: Prohibited and movable cells

Definition 4. An alternative x can be moved to the cell (i, j) where i ≥ j if (a) i ≤ i(x) and
j ≥ j(x), (b) x � y for all y with i < j(y) ≤ i(x), (c) z � x for all z with j(x) ≤ i(z) < j.

Definition requires that the alternatives in prohibited cells must move up and right (Condition
(a)). As an outcome x is moved a new cell, (i, j), it is possible that there exists y such that
i(x) ≥ j(y) but i < j(y). Condition (b) requires that in this case x % y. Suppose to the contrary
that y � x. Since i < j(y), in the new representation x B′ y. But in the original representation we
have x 7 y. So the two representations must represent different preferences. Condition (c) can be
understood similarly.

To understand this definition, we provide three examples (Figure 5). In Figure 5a, we have
x � y, z. Since we have z 7 x and x � z, x cannot be moved a cell where z will eliminate x
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(a) Movable cells if x � z, y
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(b) Movable cells if y, z � x

i 

1 

2 

3 z 
4 

5 

6 x 
7 

8 y 
1 2 3 4 5 6 7 8 

j 

(c) Movable cells if y � x � z

Figure 5: Examples of movable cells with different preferences

(Condition (c)). That is, j ≤ i(z) = 3. On the other hand, since x � y, there is no restriction on
movement on i. In Figure 5b, we have completely opposite situation y, z � x. Since we have x 7 y
and y � x, x cannot be moved a cell where x will eliminate y (Condition (b)). That is, i ≥ j(y) = 5.
On the other hand, since z � x, there is no restriction on movement on j. Finally, we provide an
example where both Condition (b) and (c) induce restrictions because we have y � x � z.

Claim 10. Suppose β � y � α and α B y B β. If there exists x such that x 7 β and α 7 x, then
x � β or α � x.

Proof. Suppose β � x � α and we shall get a contradiction. Then we have β = c(βx) and c(xα) = x
because x 7 β and α 7 x. By the assumption, we have β � c(βy) � c(αy). By Claim 7, αβxy must
be equal to either c(βx) = β or c(αy) = α. Consider c(βy) and c(xα), both of which are strictly
worse than β and strictly better than α. Axiom 3 dictates that β � βy % c(αβxy) % xα � α.
Hence, c(αβxy) cannot be equal to β or α, which is a contradiction.

Given the assumptions of Claim 10, we have j(x) ≤ i(α) < j(y) and i(y) < j(β) ≤ i(x). This
means that (i(x), j(x)) is a prohibited cell because of y. This means that x needs to be moved.
Claim 10 illustrate that x can be moved because x � β or α � x. The next claim shows that there
is a unique way to move x. That is, x can be moved to either (i(y), j(x)) or (i(x), j(y)) but not to
both.
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(a) Claim 10
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(b) Claim 11

Figure 6
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Claim 11. Let exist two alternatives x and y such that i(x) > i(y) and j(x) < j(y). Then x can
be moved to either (i(y), j(x)) or (i(x), j(y)) but not to both.

Proof. There exist two alternatives α and β such that i(α) = j(y) − 1 and j(β) = i(y) + 1.31 By
Claim 8 and 9, we have β � y � α and α B y B β. Since j(β) ≤ i(x) and j(x) ≤ i(α), x 7 β and
α 7 x by Claim 8. Thus, by Claim 10, we have x � β � α (so x cannot be moved to (i(x), j(y))
because of α) or β � α � x (so x cannot be moved to (i(y), j(x)) because of β). Therefore, all we
need to show is that x can be moved to either of them.

Case I: x � β. We show that x can be moved to (i(y), j(x)). First, Condition (a) holds trivially:
i(y) ≤ i(x) and j(x) ≥ j(x). For Condition (b), take an element z such that i(y) < j(z) ≤ i(x) (so
y B z but x 7 z). Then, it must be either y � z (which implies x � z) or z � y = c(yz) in which
case we have z � y � α and α B y B z (with x 7 z and α 7 x). By Claim 10, we should have
x � z or α � x. Since we are considering the case x � β(� α), it must be x � z. Condition (c) is
trivially satisfied because j = j(x).

Case II: α � x: Condition (a) and (b) will be now trivial while Condition (c) can be proven in
the same way how we prove Condition (b) in case I.

Claim 12. Let

Ux = {y : i(x) > i(y), j(x) < j(y) and x can be moved to (i(y), j(x))} ∪ {x}
Rx = {y : i(x) > i(y), j(x) < j(y) and x can be moved to (i(x), j(y))} ∪ {x}

and let
ix = min

y∈Ux

i(y) and jx = max
y∈Rx

j(y)

Then (i) x can be moved to (ix, jx), and (ii) (ix, jx) is a safe cell. That is, there is no z with
i(z) < ix and j(z) > jx.

Proof. Notice that by the definitions of movability, ix ≤ i(x) and jx ≥ j(x).

(i) Clearly, ix ≤ i(x) and jx ≥ j(x) as x ∈ Ux, Rx. First, we show that ix ≥ jx. Take an
alternative y ∈ Ux such that i(y) = ix. Since y ∈ Ux, x cannot be moved to (i(x), j(y)) by Claim
11. By the definition of movability, x cannot be moved to (i(x), j) if j ≥ j(y). Hence for all
z ∈ Rx \ {x}, j(z) < j(y), which means jx = maxz∈Rx j(z) ≤ j(y). Since i(y) ≥ j(y), we have
jx ≤ j(y) ≤ i(y) = ix.

Since x can be moved to (ix, j(x)), then the second condition of the movability is satisfied.
Similarly, we can prove the third requirement as well. Therefore, x can be moved to (ix, jx)

(ii) If z /∈ Ux, Rx, then by Claim 11, it must be (ix ≤)i(x) ≤ i(z) or j(z) ≤ j(x)(≤ jx). If z ∈ Ux,
then i(z) ≥ ix. If z ∈ Rz then j(z) ≤ jx.

Now, define xB̄y if and only if jy > ix.

Claim 13. B̄ is a semi-order.

31This is because since neither i(y) is the smallest nor i(y) is the largest integer within the range of i.
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Proof. Since ix ≥ jx by Claim 12 for all x, B̄ is an interval order.

Next, we shall show that if (i, j) is a safe cell, there is no element x such that ix < i and jx > j.
Suppose there is such x. Notice that it must be i ≤ i(x) or j ≥ j(x) because (i, j) is a safe cell
so it must be ix < i(x) or j > j(x). Suppose ix < i(x). Then there exists y such that i(y) = ix
and j(x) < j(y) such that x can be moved to (i(y), j(x)). By Claim 11, x cannot be moved to
(i(x), j(y)), so it cannot be moved to (i(x), j′) for any j′ ≥ j(y). Since (i, j) is a safe cell and
i(y) = ix < i, it must be j(y) ≤ j(< jx). Hence, x cannot be moved to (i(x), jx), which contradicts
the definition of jx unless jx = j(x). But if so, j(y) > jx > j but this contradicts that (i, j) is a
safe cell. Analogously, we can show a contradiction if j > j(x).

By Claim 12, all elements have been moved to safe cells, so there is no pair of elements x and y
such that ix < iy and jx > jy. Therefore, if ix < jy ≤ iy < jz (i.e. xB̄yB̄z) then for any w, it must
be either jw > jy or iw ≤ iy, which implies jw > ix or iw < jz (i.e. xB̄w or wB̄z). Therefore, B̄ is
a semiorder.

Claim 14. If x B y then xB̄y.

Proof. By definitions of i′ and j′, ix ≤ i(x) and jx ≥ j(x) for all x. Therefore, if x B y, then
ix ≤ i(x) < j(y) ≤ jy so we have xB̄y.

Claim 15. If xB̄y but not x B y, then x � y.

Proof. First, we shall note that both x and y must be in prohibited cells. If neither of them is in,
ix = i(x) and jy = j(y) so xBy and not x B y cannot happen at the same time. If only x is in a
prohibited cell, then ix < j(y) ≤ i(x) so x cannot be moved to (ix, jx). Similarly we can prove that
it is not possible that only y is in a prohibited cell.

Next we shall show that ix < i(x) and jx > j(x). Since x can be moved to (ix, jx) while y � x,
it must be ix ≥ j(y) because j(y) ≤ i(x) (i.e. not x B y). Combined with xBy, we get jy > j(y).
Flipping x and y, one can prove ix < i(x).

Therefore, there must exist z and z′ with i(z) ∈ [j(y), jy−1] and j(z′) ∈ [ix−1, i(x)] (notice that
these intervals are non-empty). Furthermore, we can take such z and z′ so that i(z) = j(z′) − 1
because ix − 1 < jy − 1 and i(x) > j(y). Thus, z′ � z by Claim 9. Since x is movable to (ix, jx),
we have x � z′. Similarly, we have z � y. Therefore, we conclude x � y.

Claim 16. c(S) is equal to the �-best element in ΓB̄(S).

Proof. We know B̄ is transitive, B̄ ⊇B and x � y whenever xB̄y but not x B y. It is easy to see
that this claim can be proven in the exactly same way as Claim 6.

(Representation ⇒ Axioms 1-4) Showing that the first axiom is necessary is straightforward.
Let

Γ(A) = {x ∈ A : max
y∈A

v(y)− v(x) ≤ w}

For Axiom 2, if x � c(A ∪ x) then A must have an element y with v(y) > v(x) + w, so it is clear
that Γ(A) = Γ(A ∪ x) so c(A) = c(A ∪ x).

Axiom 3: Let x∗ be the u-best element in Γ(A ∪ B). Then it must be in Γ(A) or Γ(B) so it
is not possible that c(A ∪ B) is strictly preferred to both c(A) and c(B). Now we show that the
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union cannot be strictly worse than both. Let xA and xB be the u-best elements in Γ(A) and Γ(B),
respectively, and take vA and vB be the maximum values of v in A and in B, respectively. Then
we have

vA ≤ v(xA) + w and vB ≤ v(xB) + w

Therefore the maximum value of v in A ∪B is the higher one between vA and vB, either xA or xB
must be in Γ(A ∪B) so c(A ∪B) must be weakly better than either c(A) or c(B).

Finally we show that the representation implies Axiom 4. Suppose x � c(xy) � c(yz), then it
must be x � y � z, v(y)− v(x) > w and v(z)− v(y) > w. Therefore, v(z)− v(x) > 2w.

Since c(tz) = t, we must either “z � t and v(t)− v(z) > w” or “t � z and v(z)− v(t) ≤ w.” In
both cases, we have v(t)− v(x) > w, hence we have c(xt) = t.

Proof of Theorem 3

By Axiom 5, % is represented by a linear function u. Hence the usual uniqueness result applies to
u. Now, we need to prove that c is represented by our model. In other words, our task is to show
that there exist v and w that represent c along with u.

Let pαq represent the lottery r where r(x) is equal to αp(x) + (1 − α)q(x) for all x ∈ X. We
allow the possibility of α < 0 or α > 1 as long as r(x) ∈ [0, 1] for all x ∈ X. Thus, whenever we
refer to α greater than 1 or less than 0, we implicitly assume that the mixture is well-defined. Also,
we understand that c(A) = p is an abbreviation of c(A) = {p}.

Through the proof, we are often interested in whether % and the choice are consistent or not.
To do so we define the following terminologies:

Definition 5. Suppose p � q. p is choosable over q if c(p, q) = p. Similarly, p is unchoosable
over q (q blocks p) if c(p, q) = q. Finally, p is just choosable over q if (i) p is choosable over
pαq if 0 < α < 1 but unchoosable over pαq if α < 0 and (ii) pαq is choosable over q if 0 < α < 1
but unchoosable over q if α > 1.

Notice that if p is just choosable over q, it is indeed choosable over q by Axioms 2 and 11. To
see this take a sequence αn in (0, 1) approaching zero. Since c(p, pαnq) = p for all αn, Axiom 11
implies that p ∈ c(p, q). Since p � q, Axiom 2 implies that c(p, q) = p, thus p is choosable over q.

Claim 17. If p is choosable over q, then pαq is choosable over pβq for any α and β with 0 ≤ β ≤
α ≤ 1. Moreover, if p is unchoosable over q, then pαq is unchoosable over pβq for any α and β
with β ≤ 0 and α ≥ 1.

Proof of Claim 17: Assume p is choosable over q. Take α and β with 0 ≤ β ≤ α ≤ 1. By Axiom
9, pαq is choosable over q because q = qαq and c(p, q) = p. Applying Axiom 9 again, we have pαq
is choosable over (pαq)βαq = pβq given that β ≤ α.

Now take α ≥ 1 and β ≤ 0 and assume p is unchoosable over q. If pαq is choosable over q, by the
first part of the claim, we must have p is choosable over q since (pαq) 1

αq = p, a contradiction. Hence,
pαq is unchoosable over q. Similarly, if pαq is choosable over pβq, by the first part of the claim,
we must have pαq is choosable over q since (pαq) −βα−β (pβq) = q (0 ≤ −β

α−β ≤ 1), a contradiction.
Hence, pαq is unchoosable over pβq. �

35



Claim 18. Let p � q. If p is unchoosable over q, then there exists unique α ∈ (0, 1) such that pαq
is just choosable over q and p is just choosable over p(1− α)q.

Proof of Claim 18: The uniqueness of such α is directly implied by Axiom 9. Thus, we shall
prove the existence. Let C = {α′ ∈ (0, 1] : pα′q is choosable over q}. By Axiom 13, ε ∈ C for
sufficiently small positive ε but 1 /∈ C. Let α = supC, which is strictly positive. Furthermore, C is
convex by Axiom 9. Let p′ = pαq. Since p′βq = p(αβ)q, p′βq is choosable over q if 0 < β < 1 and
unchoosable if β > 1. We now show that p′ is choosable over p′βq if 0 < β < 1 but unchoosable
over p′βq if β < 0. To prove the second part by a contradiction, assume p′ is choosable over p′βq
for some when β < 0. Then define λ = −αβ

1−αβ > 0. Note that pλ(p′βq) is equal to q. Since λ > 0,

pλp′ is equal to pα′q where α′ > α = supC. Moreover, by Axiom 9, we have pλp′ is choosable over
pλ(p′βq). This is a contradiction to the fact that α = supC. When 0 < β < 1, since α > αβ,
αβ ∈ C. By Claim 17, we conclude p′ is choosable over p′βq. Therefore, p′ = pαq is just choosable
over q.

Similarly, define C ′ = {α′ ∈ (0, 1] : p is choosable over p(1 − α′)q}. The exactly same argument
shows that p is just choosable over p(1− supC ′)q. We shall show that supC ′ = supC(= α) simply
by showing C ′ = C. Suppose β ∈ C, which means that pβq is choosable over q = qβq. Thus,
p = pβp is choosable over qβp = p(1−β)q by Axiom 10 so β ∈ C ′. Similarly, β /∈ C implies β /∈ C ′.
Therefore, C = C ′. �

Claim 19. Let pγq be just choosable over q with 0 < γ ≤ 1 and both pαq and pβq exist. Then, for
any α > γ, pαq is just choosable over pβq if and only if α− β = γ.

Proof of Claim 19: We shall show that pαq is just choosable over p(α−γ)q. Let p′ = pαq. Then,
p′(γ/α)q = pγq, hence p′(γ/α)q is just choosable over q. By Claim 18 and γ/α ∈ (0, 1), p′(= pαq)
is just choosable over p′(1− (γ/α))q(= p(α− γ)q). �

Claim 20. Let pγq be just choosable over q with 0 < γ ≤ 1 and both pαq and pβq exist. Then pαq
is just choosable over pβq if and only if α− β = γ.

Proof of Claim 20: If α > γ, then we are done by Claim 19. If α = γ, the statement is trivially
true. Hence assume α < γ. By Claim 17, pαq is choosable over q, which implies β is less than
0. More importantly, we have β < 1 − γ < 1. Let p′′ = pβq. Then, p(1−γ−β

1−β )p′′ is equal to

p(1− γ)q. Notice that 1−γ−β
1−β ∈ (0, 1). Since p is just choosable over p(1−γ−β

1−β )p′′, by Claim 18, we

have p′′(1−γ−β
1−β )p is just choosable over p′′. Given that p′′(1−γ−β

1−β )p is equal to p(β + γ)q, we reach
the desired conclusion: p(β + γ)q is just choosable over pβq. �

Claim 21. Let p, q be interior of ∆N−1 and p is choosable over q. Then there exists ε > 0 such
that for any p′ in ε-neighborhood of p, say Nε(p), and any q′ ∈ ∆N−1 with p′i − q′i = pi − qi for
all i, p′ is choosable over q′. The statement is also true for “unchoosable” and “just choosable”
relationships.

Proof of Claim 21: We first show that the claim is true for “choosable” relationship. Let r be
p1

2q. Since p and q are interior points find p0 6= p, q0 6= q and α ∈ (0, 1) such that p = p0αr and
q = q0αr. It is routine to check that p′i − pi = (1− α)(r′i − ri) for all i (see Figure 7). Take ε > 0
and let Nε(p) be the ε ball around p. Choose ε small enough so that Nε(p) belongs to the simplex.
Then for each p′ in Nε(p), choose r′ so that p′ = p0αr

′. As ε gets smaller, all p′’s get close to p.
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Consequently, all r′’s get close to r. Since r is in the interior of the simplex, we choose ε small
enough so that all r′’s are in the simplex as well. We then fix the ε, and set the neighborhood as
Nε(p).

p0#

p#

q#

r#

p’#

r’#

q0#

q’#

Figure 7: Paralel Shift

Next, take any p′ from the neighborhood of p constructed above. We know show that for q′ such
that p′i − q′i = pi − qi for all i, it must be c(p′, q′) = p′. Note that we have c(p0αr, q0αr) = p0αr.
By Axiom 10, c(p0αr

′, q0αr
′) = p0αr

′. Since p′i − pi = q′i − qi = (1−α)(r′i − ri), we have q′ = q0αr
′

(see Figure 7). Hence, c(p′, q′) = p′.

Since the proof of “unchoosable” relationship is similar to above, we omit it. If both the choosable
and unchoosable relationships are preserved for small parallel shifts, “just choosable” relationship
will also be preserved by Claim 17. �

By Axiom 12 there exist g′ and b such that g′ � b but c(g′, b) = b. By Axiom 11, we can find such
g′ and b from the set of completely mixed lotteries. By Claim 18, there exists a lottery g between
g′ and b which is just choosable over b. Since b and g are interior points, there exist ε and ε′ such
that Nε(g) ∪ Nε′(b) ⊂ ∆N−1 with p � q for any p ∈ Nε(g) and q ∈ Nε′(b) (Axiom 11). Consider
two subsets of Nε(g):

A(b) = {p ∈ Nε(g) : p � b = c(p, b)} and B(b) = {p ∈ Nε(g) : p = c(p, b) � b}

Note that A(b)∪B(b) = Nε(g) and A(b)∩B(b) = ∅.32 By Axiom 9, both sets are convex. Therefore,
there exists a hyperplane V0 such that g ∈ V0 and V0 separates A(b) and B(b). By Axiom 11,
V0 ∩ Nε(g) is a subset of B. We next show that all points (within Nε(g)) on the hyperplane are
just choosable over b. Take a point on V0, say p. Consider the line passing through p and b. Since
p is choosable over b, for all 0 < α ≤ 1, pαb is also choosable over b. Since V0 is a hyperplane,
there exists α′ such that pα′b is in A(b). That is, pα′b is not choosable over b. Moreover, for all
1 < α < α′ we have pαb is in A(b). Then by Claim 18, there exists unique α′′ such that α′ > α′′ ≥ 1
and pα′′b is just choosable over b, hence pα′′b ∈ B(b). If α′′ > 1 then we have a contradiction since
A(b) ∩B(b) = ∅. Hence, p is just choosable over b.

Similarly, there exists a hyperplane V1 such that b ∈ V1 and V1 divides Nε′(b) into the two regions:
A(g) = {q ∈ Nε′(b) : g = c(q, g) � q} and B(g) = {q ∈ Nε′(b) : g � q = c(q, g)}, and g is just
choosable over all points (within Nε′(b)) on the hyperplane.

32Since p � b for any p ∈ Nε(g), by Axiom 2, c(p, b) must be either p or b.
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Claim 22. V0 and V1 are parallel.

b"

g"

V0"

V1"

g’"

b’"b’’"
b’’’"

Figure 8: Hyperplanes are parallel

Proof of Claim 22: Figure 9 is helpful to follow the proof. Suppose two hyperplanes V0 and
V1 are not parallel. Hence there exist two alternatives g′ ∈ V0 \ {g} and b′ ∈ V1 \ {b} such that
g′i− bi = λ(gi− b′i) for all i with 0 < λ < 1. Geometrically, this means that (i) g′b line is parallel to
gb′ line and (ii) the distance between b and g′ is smaller than the distance between g and b′. Now
consider b′′ such that b′′i − b′′′i = gi − g′i for all i. This is a shift parallel to V0. Since V0 and V1 are
not parallel, b′′ lies strictly between g and b′. Since g is just choosable over b′, g is choosable over
b′′. Since we can choose g′ arbitrary close to g, we can invoke Claim 21 to show that g′ is choosable
over b

′′′
. This yields a contradiction since g′ is just choosable over b and b lies strictly between g′

and b′′′ (Claim 18). �

Claim 23. There exist two open neighborhoods of g and b, say Ng and Nb, such that p is just
choosable over q for any p ∈ V0 ∩Ng and q ∈ V1 ∩Nb.

Proof of Claim 23: Since g is just choosable over b, by Claim 21, there exists a neighborhood
of g, Nε(g), such that for any ĝ in Nε(g) and any b̂ ∈ Nε(b) with ĝi − b̂i = gi − bi for all i, ĝ is
just choosable over b̂. Now consider Nε(g) ∩ V0. By Claim 22, if ĝ is on V0, then b̂ must be on V1.
Hence we have ĝ is just choosable over b and g is just choosable over b̂.

Now take any p ∈ Nε/2(g) ∩ V0 and q ∈ Nε/2(b) ∩ V1. There exists g′ ∈ Nε(g) ∩ V0 such that p

is the mid-point of g and g′, i.e., p = g 1
2g
′. Similarly, there exists b′′ ∈ Nε(b) ∩ V1 such that q is

the mid-point of b and b′′, i.e., q = b1
2b
′′. Now define g′′ in Nε(g) ∩ V0 and b′ ∈ Nε(b) ∩ V1 such

that g′′i − b′′i = g′i − b′i = gi − bi for all i. We have show above that g′ is just choosable over b and
g is just choosable over b′′. By applying Axiom 9, we get g′ 12g is just choosable over b1

2b
′′. Since

p = g 1
2g
′ = g′ 12g and q = b1

2b
′′, p is just choosable over q. �

Claim 24. Let p ∈ V0 ∩Ng and q ∈ V1 ∩Nb and α, β (not necessarily between 0 and 1). Then pαq
is just choosable over pβq if and only if α− β = 1.

Proof of Claim 24: By Claim 23, p is just choosable over q. Consider the line crossing p and q.
By Claim 20, on this line, pαq is just choosable over pβq if and only if α− β = 1. �
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Now we shall construct v. Let Lbg = {p : p = bαg for some α}, which is the set of all linear
combinations of g and b in ∆N−1. We first define v only over Lbg as follows:

v(p) = α where p = bαg

Note that v(b) = 1 and v(g) = 0. Directly applying Claim 20, we have the following claim stating
that the representation holds for any binary set contained in Lbg.

Claim 25. For any p, q ∈ Lbg with p � q, p is choosable over q if and only if v(q)− v(p) ≤ 1.

Our next step is to define v for all lotteries and show that the representation holds for any binary
set. For any p ∈ V0 q ∈ V1, define v(p) = 1 and v(q) = 0. For all other points, define v so that v is
linear.

Claim 26. Suppose p � q. Then p = c(p, q) if and only if v(q)− v(p) ≤ 1.

Proof of Claim 26: Take two points p and q such that p � q and 1 ≥ v(q)− v(p) := λ. Suppose
q = c(p, q), i.e. p is not choosable over q. Consider gα = bαg with α < 0. Since g is just choosable
over b, gα is not choosable over b. By Axiom 9, gαβp is not choosable over bβq.

Given α < 0 there exists β < 1 such that v(bβq) − v(gαβp) = 1. We can calculate the relation
between α and β. To see this,

1 = (1− α)β + (1− β)[v(q)− v(p)]

β(α) =
1− λ

1− λ− α

Note that β(α) is less than 1 and goes monotonically to 1 as α approaches to 0. By choosing α
close enough to zero, we have gαβp ∈ Ng and bβq ∈ Nb are true.

Now consider the line goes through these two points. Since v(bβq) 6= v(gαβp), this line intersects
with V0 and V1. Denote g′ and b′ as the intersections of this line and V0 and V1, respectively. There
exists α′ such that g′α′b′ = gαβp. We have

v(g′α′b′) = v(gαβp)

α′v(g′) + (1− α′)v(b′) = βv(gα) + (1− β)v(p)

1− α′ = βα+ (1− β)v(p)

1− α′ + 1 = βα+ (1− β)v(p) + (1− α)β + (1− β)[v(q)− v(p)]

2− α′ = β + (1− β)v(q)

v(g′(α′ − 1)b′) = v(bβq)

Hence, g′(α′ − 1)b′ = bβq. By Claim 24, g′α′b′ is just choosable over g′(α′ − 1)b′. That is, gαβp is
just choosable over bβq, a contradiction.

Similarly, one can show that if p � q and 1 < v(q)− v(p) then c(p, q) is equal to q. �

Claim 27. Suppose p ∼ q. Then p ∈ c(p, q) if and only if v(q)− v(p) ≤ 1.

Proof of Claim 27: Take two points p and q such that p ∼ q and 1 ≥ v(q)− v(p) := λ. Consider
a decreasing sequence of real numbers αk > 0 with limk→∞ αk = 0. Define gαkp and bαkq. Since
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g � b and p ∼ q, we have gαkp � bαkq for all αk. In addition, we have v(bαkq) − v(gαkp) =
αk + (1− αk)λ ≤ 1 for all αk since λ ≤ 1. By Claim 26, we have gαkp = c(gαkp, bαkq). By Axiom
11, p ∈ c(p, q).

To see the converse, suppose, towards a contradiction, p ∼ q and 1 < v(q) − v(p)(:= λ′) but
p ∈ c(p, q). Take an α ∈ (0, 1) and consider gαp and bαq. Since g � b and p ∼ q, we have
gαp � bαq. In addition, we have v(bαq) − v(gαp) = α + (1 − α)λ′ > 1 since λ′ > 1. By Claim
26 and Axiom 2, we have gαp /∈ c(gαp, bαq). This contradicts Axiom 9 (part i) since g = c(g, b),
p ∈ c(p, q) and p ∼ q. �

Claim 26 and Claim 27 establish the representation for any binary set. The next goal is to extend
the representation from binary sets to any finite set.

Claim 28. c(A) = arg maxp∈A u(p) subject to maxq∈A v(q)− v(p) ≤ w for all finite set of lotteries
A.

Proof of Claim 28 Let c′ be the choice correspondence represented by (u, v, 1) as we constructed
from c. We know that c(A) = c′(A) whenever |A| = 2. Now suppose that c(A) = c′(A) whenever
|A| ≤ n. Let |B| = n+ 1.

Suppose x ∈ c(B) but x /∈ c′(B). By construction of c′ there are two cases to consider. First
case is that x /∈ c′(B) because there is another choosable element in B that is preferred to x. The
second case is that x itself is not choosable. We will now consider the two case and in turn and
show that each leads to a contradiction.

• There exists y ∈ B such that y � x but there is no z ∈ B such that v(z) − v(y) > 1. This
implies that c′(B) % y. In addition, for any T ⊂ B including y, we have c′(T ) % y. By the
inductive hypothesis, c(B \ z) % y for any z ∈ B \ y. Since |B| ≥ 3, take two alternatives z
and z′ in B \ y. Since c(B \ z), c(B \ z′) % y, by Axiom 3 we have c(B) % y � x, which is a
contradiction.

• Suppose there exists y ∈ B with v(y) − v(x) > 1. Without loss of generality, assume that
v(y) = maxy′∈B v(y′).

– We know that y � x is not possible from the previous case.

– If y ∼ x then we have c′(x, y) = c(x, y) = y. Hence x /∈ c(x, y) ∼ x ∼ c(B), contradicting
Axiom 6.

– If y ≺ x, then x must be one of the best elements in B. If not, there exists z � x
and Axiom 2 implies c(B \ z) = c(B) so x ∈ c(B \ z), which contradicts the inductive
hypothesis because y ∈ B \ z and c(B \ z) = c′(B \ z). Now, consider the sets A = {z :
z ∈ B and z ∼ x} and B′ = B \ (A \ x). Note that x is the unique best element in B′.
By Axiom 8, c(B′) % c(B) so c(B′) = x, which also contradicts the inductive hypothesis
(y ∈ B′ and c(B′) = c′(B′)).

Therefore, we conclude that c(B) ⊂ c′(B).

For the other direction, suppose x ∈ c′(B). Since c(B) ⊂ c′(B), for any y ∈ c(B), we have
y ∈ c′(B). By construction of c′, we have x ∼ y. If there is no alternative in B such that z � x,
then x ∈ c′(x, z) = c(x, z) for all z ∈ B. Thus, by Axiom 7, x ∈ c(B) so c′(B) ⊂ c(B).
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Assume there are some alternatives which rank above x (or y), say z. Then by Axiom 2 c(B) =
c(B \ z). By induction hypothesis, c(B) = c(B \ z) = c′(B \ z). Since x ∈ c′(B \ z) by definition of
c′, we have x ∈ c(B) so c′(B) ⊂ c(B). �

Proof of Theorem 4

Since v is linear, it is routine to show that (u, v′, w′) also represents c if there exist α′ > 0 and β′

such that v′(x) = α′v(x) + β′and w′ = α′. This proves our uniqueness result. �

Proof of Theorem 5

It is straightforward to verify the if-part so we only show the only-if part. Suppose controls have
more willpower than treatments under the same temptation.

Hence, each subject i ∈ {cont, treat} is represented by some (u, vi, wi) and such (vi, wi) is unique
if both vi’s are normalized so that vcont(x) = vtreat(x) = 0 for some x, and Σx∈X(vi(x))2 = 1.
Suppose that vcont and vtreat have been normalized in such a way.

If vcont = vtreat, clearly it must be wcont ≥ wtreat so we have the desired result. Thus, we
shall show that it must be vcont = vtreat. Suppose vcont 6= vtreat, then there exists α ∈ R|X| with
Σx∈Xαx = 0 such that ∇vcontα > 0 > ∇vtreatα where ∇vi = (∂vi/∂xi)i∈X . Take g, b ∈ int(∆)
with g � b and vcont(b)−vcont(g) = wcont (see Figure 9). Since treatments choose a worse alternative
whenever controls do, it must be vtreat(b)− vtreat(g) ≥ wtreat.

ucont=utreat

vcont wcont

vtreat

b’’

g

b

b’

Figure 9: Comparative Statics

Consider two lotteries b′ = b + εα and b′′ = b − εα, both of which are element of ∆ as long as
ε > 0 is small enough. Then, vcont(b

′) > vcont(b) > vcont(b
′′) so ccont(g, b

′) = b′ and ccont(g, b
′′) =

g. In contrast, it is vtreat(b
′′) > vtreat(b) > vtreat(b

′). Hence, we can find β ∈ (0, 1] such that
vtreat(gβb

′′) − vtreat(g) > wtreat > vtreat(gβb
′) − vtreat(g), which implies ctreat(g, gβb

′) = g but
ctreat(g, gβb

′′) = gβb′′. This contradicts the second requirement of the definition. �
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Proof of Theorem 6

Since (%, c) satisfies Axioms 1-11, it has a limited willpower representation (u, v, w).

Suppose y % x but x �c y. Then by definition of �c either (i) x = c(x, y) and there exists no
α ∈ (0, 1) such that y ∈ c(xαy, y) or (ii) y = c(x, y) and there exists some α ∈ (0, 1) such that
xαy = c(xαy, y).

Since y % x, u (y) ≥ u (x). In case (i), x = c(x, y), thus we have v (x) − v (y) > w. Since v is
linear, v (xαy) − v (y) = α (v (x)− v (y)). For α small enough, we have α (v (x)− v (y)) < w. In
addition u (y) ≥ u (xαy). Thus for α small, it must be that y ∈ c(xαy, y) which is a contradiction.
In case (ii), y = c(x, y), thus we have v (x) − v (y) ≤ w. For all α ∈ (0, 1), v (x) − v (xαy) =
(1− α) (v (x)− v (y)) ≤ w. Hence we must have xαy ∈ c(xαy, y), which is a contradiction. Thus
y % x implies y %c x.

Next suppose y %c x, but x � y. Since u(x) > u(y), for any α ∈ (0, 1], u(xαy) > u(y). There are
two cases: If v(y)− v(x) ≤ w then v (y)− v (xαy) = α (v(y)− v(x)) ≤ w, and xαy = c (xαy, y) for
any α ∈ (0, 1]. If v(y)− v(x) > w, v (y)− v (xαy) = α (v (y)− v (x)) < w and xαy = c (xαy, y) for
α close to zero. In either case x �c y, a contradiction. Thus y � x if and only if y %c x. �
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